On scene interpretation with description logics

We examine the possible use of Description Logics as a knowledge representation and reasoning system for high-level scene interpretation. It is shown that aggregates composed of multiple parts and constrained primarily by temporal and spatial relations can be used to represent high-level concepts such as object configurations, occurrences, events and episodes. Scene interpretation is modelled as a stepwise process which exploits the taxonomical and compositional relations between aggregate concepts while incorporating visual evidence and contextual information. It is shown that aggregates can be represented by concept expressions of a Description Logic which provides feature chains and a concrete domain extension for quantitative temporal and spatial constraints. Reasoning services of the DL system can be used as building blocks for the interpretation process, but additional information is required to generate preferred interpretations. A probabilistic model is sketched which can be integrated with the knowledge-based framework.

[1]  Manfred Schmidt-Schauß,et al.  Subsumption in KL-ONE is Undecidable , 1989, KR.

[2]  Dieter Metzing,et al.  Frame conceptions and text understanding , 1980 .

[3]  Volker Haarslev,et al.  RACER User''s Guide and Reference Manual Version 1. 6. University of Hamburg, Computer Science De , 2001 .

[4]  Raymond Reiter,et al.  The Logic of Depiction , 1987 .

[5]  Wilfried Brauer,et al.  Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning , 2003 .

[6]  Volker Haarslev,et al.  The Description Logic ALCNHR+ Extended with Concrete Domains: A Practically Motivated Approach , 2000, IJCAR.

[7]  Patrick Lambrix,et al.  Part-Whole Reasoning in an Object-Centered Framework , 2001, Lecture Notes in Computer Science.

[8]  Gert Smolka,et al.  Attributive Concept Descriptions with Unions and Complements , 1989, IWBS Report.

[9]  Thomas O. Binford,et al.  Bayesian inference in model-based machine vision , 1987, Int. J. Approx. Reason..

[10]  Mark Stefik,et al.  Introduction to knowledge systems , 1995 .

[11]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[12]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[13]  Michael Wessel,et al.  A High Performance Semantic Web Query Answering Engine , 2005, Description Logics.

[14]  Rocky Ross,et al.  Mental models , 2004, SIGA.

[15]  N. Cocchiarella,et al.  Situations and Attitudes. , 1986 .

[16]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[17]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[18]  Franz Baader,et al.  Embedding defaults into terminological knowledge representation formalisms , 1995, Journal of Automated Reasoning.

[19]  Werner Nutt,et al.  An Epistemic Operator for Description Logics , 1998, Artif. Intell..

[20]  P. Hayes The Logic of Frames , 1981 .

[21]  Alon Y. Halevy,et al.  P-CLASSIC: A Tractable Probablistic Description Logic , 1997, AAAI/IAAI.

[22]  Ralf Küsters,et al.  Matching in Description Logics with Existential Restrictions , 1999, Description Logics.

[23]  Somboon Hongeng Unsupervised Learning of Multi-Object Event Classes ∗ , 2004 .

[24]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[25]  Bernd Neumann,et al.  On the logics of image interpretation: model-construction in a formal knowledge-representation framework , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[26]  D. Bobrow,et al.  Representation and Understanding: Studies in Cognitive Science , 1975 .

[27]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[28]  VilaLluís,et al.  A survey on temporal reasoning in artificial intelligence , 1994 .

[29]  Kathryn B. Laskey,et al.  Hypothesis Management in Situation-Specific Network Construction , 2001, UAI.

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  Peter F. Patel-Schneider,et al.  Living wiht Classic: When and How to Use a KL-ONE-Like Language , 1991, Principles of Semantic Networks.

[32]  Hans-Hellmut Nagel,et al.  Behavioral Knowledge Representation for the Understanding and Creation of Video Sequences , 2003, KI.

[33]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[34]  Ian Horrocks,et al.  Reasoning with Individuals for the Description Logic SHIQ , 2000, CADE.

[35]  Enrico Franconi,et al.  A survey of temporal extensions of description logics , 2001, Annals of Mathematics and Artificial Intelligence.

[36]  F. Lehmann,et al.  Semantic Networks in Artificial Intelligence , 1992 .

[37]  H.-H. Nagel From video to language-a detour via logic vs. jumping to conclusions , 1999, Proceedings Integration of Speech and Image Understanding.

[38]  Volker Haarslev,et al.  RACER System Description , 2001, IJCAR.

[39]  Nicola Guarino,et al.  Dwq : Esprit Long Term Research Project, No 22469 Part-whole Relations in Object-centered Systems: an Overview Part-whole Relations in Object-centered Systems: an Overview , 2022 .

[40]  Takashi Matsuyama,et al.  SIGMA: A Knowledge-Based Aerial Image Understanding System , 1990 .

[41]  Alexander Borgida,et al.  Computing Least Common Subsumers in Description Logics , 1992, AAAI.

[42]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[43]  Ronald J. Brachman,et al.  ON THE EPISTEMOLOGICAL STATUS OF SEMANTIC NETWORKS , 1979 .

[44]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[45]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[46]  Robert M. MacGregor,et al.  VEIL: Combining Semantic Knowledge with Image Understanding , 1996 .

[47]  Somboon Hongeng Unsupervised Learning of Multi-Object Events , 2004, BMVC.

[48]  Christopher M. Brown,et al.  Control of selective perception using bayes nets and decision theory , 1994, International Journal of Computer Vision.

[49]  Bernd Neumann,et al.  Navigating through Logic-Based Scene Models for High-Level Scene Interpretations , 2003, ICVS.

[50]  Takeo Kanade,et al.  Region segmentation: Signal vs semantics , 1980 .

[51]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[52]  Franz Baader,et al.  Extensions of Concept Languages for a Mechanical Engineering Application , 1992, GWAI.

[53]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[54]  Nicholas V. Findler,et al.  Associative Networks- Representation and Use of Knowledge by Computers , 1980, CL.

[55]  Peter A. Flach,et al.  Hierarchical Bayesian Networks: A Probabilistic Reasoning Model for Structured Domains , 2002 .

[56]  Manfred Schmidt-Schaubß,et al.  Subsumption in KL-ONE is undecidable , 1989, KR 1989.

[57]  Hans-Hellmut Nagel,et al.  Integration of Image Sequence Evaluation and Fuzzy Metric Temporal Logic Programming , 1997, KI.

[58]  William A. Woods,et al.  What's in a Link: Foundations for Semantic Networks , 1975 .

[59]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[60]  Franz Baader,et al.  A Scheme for Integrating Concrete Domains into Concept Languages , 1991, IJCAI.

[61]  Carsten Schröder Bildinterpretation durch Modellkonstruktion - eine Theorie zur rechnergestützten Analyse von Bildern , 1999, DISKI.

[62]  James G. Schmolze,et al.  The KL-ONE family , 1992 .

[63]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[64]  Ulrike Sattler Description Logics for the Representation of Aggregated Objects , 2000, ECAI.

[65]  Hans W. Guesgen,et al.  Spatial and Temporal Reasoning , 2003, AI Commun..

[66]  Jochen Heinsohn,et al.  Probabilistic Description Logics , 1994, UAI.

[67]  Philipp M. Yelland An Alternative Combination of Bayesian Networks and Description Logics , 2000, KR.

[68]  Anthony G. Cohn,et al.  Towards an Architecture for Cognitive Vision Using Qualitative Spatio-temporal Representations and Abduction , 2003, Spatial Cognition.

[69]  R. Moller,et al.  Towards computer vision with description logics: some recent progress , 1999, Proceedings Integration of Speech and Image Understanding.

[70]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[71]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[72]  Francesco M. Donini,et al.  A Description Logic for Image Retrieval , 1999, AI*IA.

[73]  Richard J. Howarth,et al.  Interpreting a dynamic and uncertain world: High-level vision , 1995, Artificial Intelligence Review.