Brain : A Coll aborative Resource for Visualizing , Analyzing , Simulating , and Developing Standardized Models of Neurons and Circuits Graphical

[1]  Michael L. Hines,et al.  Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits , 2018, Neuron.

[2]  William W. Lytton,et al.  NetPyNE, a tool for data-driven multiscale modeling of brain circuits , 2019, eLife.

[3]  Markus Diesmann,et al.  A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas , 2018, PLoS Comput. Biol..

[4]  Padraig Gleeson,et al.  Geppetto: a reusable modular open platform for exploring neuroscience data and models , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Richard Gordon,et al.  OpenWorm: overview and recent advances in integrative biological simulation of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B.

[6]  M. Wehr,et al.  Rapid Rebalancing of Excitation and Inhibition by Cortical Circuitry , 2018, Neuron.

[7]  Markus Diesmann,et al.  Multi-scale account of the network structure of macaque visual cortex , 2017, Brain Structure and Function.

[8]  Xiao-Jing Wang,et al.  Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex , 2017, Neuron.

[9]  Henry Markram,et al.  Morphological Diversity Strongly Constrains Synaptic Connectivity and Plasticity , 2017, Cerebral cortex.

[10]  H. Adesnik Synaptic Mechanisms of Feature Coding in the Visual Cortex of Awake Mice , 2017, Neuron.

[11]  Simon R. Schultz,et al.  Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology , 2017, Neuron.

[12]  Jeffry S. Isaacson,et al.  Network-Level Control of Frequency Tuning in Auditory Cortex , 2017, Neuron.

[13]  Henry Markram,et al.  Rich cell-type-specific network topology in neocortical microcircuitry , 2017, Nature Neuroscience.

[14]  D. R. Muir,et al.  Assessing the Role of Inhibition in Stabilizing Neocortical Networks Requires Large-Scale Perturbation of the Inhibitory Population , 2017, The Journal of Neuroscience.

[15]  William W. Lytton,et al.  Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis , 2017, IBM J. Res. Dev..

[16]  Claudia Clopath,et al.  Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks , 2017, Nature Communications.

[17]  Ivan Raikov,et al.  Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit , 2016, eLife.

[18]  K. Amunts,et al.  The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain , 2016, Neuron.

[19]  Wulfram Gerstner,et al.  Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size , 2016, PLoS Comput. Biol..

[20]  Jeffrey Perkel,et al.  Democratic databases: science on GitHub , 2016, Nature.

[21]  Christof Koch,et al.  A Computational Analysis of the Function of Three Inhibitory Cell Types in Contextual Visual Processing , 2016, Front. Comput. Neurosci..

[22]  Alois Schlögl,et al.  Synaptic mechanisms of pattern completion in the hippocampal CA3 network , 2016, Science.

[23]  Shoaib Sufi,et al.  Toward standard practices for sharing computer code and programs in neuroscience , 2016, Nature Neuroscience.

[24]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[25]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[26]  James G. King,et al.  The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex , 2015, Front. Neural Circuits.

[27]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[28]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[29]  Daniel B. Rubin,et al.  The Stabilized Supralinear Network: A Unifying Circuit Motif Underlying Multi-Input Integration in Sensory Cortex , 2015, Neuron.

[30]  Robert C. Cannon,et al.  LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2 , 2014, Front. Neuroinform..

[31]  R. Angus Silver,et al.  Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding , 2014, Neuron.

[32]  Nicholas Cain,et al.  The computational properties of a simplified cortical column model , 2014, BMC Neuroscience.

[33]  Michael L. Hines,et al.  Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb , 2014, Front. Comput. Neurosci..

[34]  Andrew P. Davison,et al.  libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience , 2014, Front. Neuroinform..

[35]  Jinde Cao,et al.  Introduction to Computational Neuroscience , 2016 .

[36]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[37]  Frances K. Skinner,et al.  Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms , 2013, Front. Comput. Neurosci..

[38]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[39]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[40]  Viktor K. Jirsa,et al.  The Virtual Brain: a simulator of primate brain network dynamics , 2013, Front. Neuroinform..

[41]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[42]  Tobias C. Potjans,et al.  The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model , 2012, Cerebral cortex.

[43]  Henry Markram,et al.  Channelpedia: An Integrative and Interactive Database for Ion Channels , 2011, Front. Neuroinform..

[44]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[45]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[46]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[47]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[48]  Michael L. Hines,et al.  NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail , 2010, PLoS Comput. Biol..

[49]  Ole Paulsen,et al.  Distinct Roles of GABAA and GABAB Receptors in Balancing and Terminating Persistent Cortical Activity , 2009, The Journal of Neuroscience.

[50]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[51]  Henry Markram,et al.  Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons , 2008, Biological Cybernetics.

[52]  Andrew P. Davison,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Frontiers in Neuroinformatics.

[53]  Upinder S. Bhalla,et al.  PyMOOSE: Interoperable Scripting in Python for MOOSE , 2008, Frontiers in neuroinformatics.

[54]  Jordan H. Boyle,et al.  Caenorhabditis elegans body wall muscles are simple actuators , 2008, Biosyst..

[55]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[56]  Egidio D'Angelo,et al.  Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells , 2007, Frontiers in cellular neuroscience.

[57]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[58]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[59]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[60]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[61]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[62]  Giorgio A Ascoli,et al.  Signal propagation in oblique dendrites of CA1 pyramidal cells. , 2005, Journal of neurophysiology.

[63]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[64]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[65]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[66]  Jacky L. Snoep,et al.  Web-based kinetic modelling using JWS Online , 2004, Bioinform..

[67]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[68]  L. Loew,et al.  The Virtual Cell: a software environment for computational cell biology. , 2001, Trends in biotechnology.

[69]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[70]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[71]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[72]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[73]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[74]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[75]  M. Avoli,et al.  GABAA-mediated inhibition and in vitro epileptogenesis in the human neocortex. , 1995, Journal of neurophysiology.

[76]  W. Rall Electrophysiology of a dendritic neuron model. , 1962, Biophysical journal.

[77]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[78]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[79]  Jorge F Mejias,et al.  Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types. , 2017, eLife.

[80]  Nicholas T. Carnevale,et al.  Introducing The Neuroscience Gateway , 2013, IWSG.

[81]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 2004, Journal of Computational Neuroscience.

[82]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[83]  G. Halasz Research priorities. , 1983, The Australian and New Zealand journal of psychiatry.

[84]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[85]  Peter J. Hunter,et al.  Bioinformatics Applications Note Databases and Ontologies the Physiome Model Repository 2 , 2022 .