On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization

Abstract Aerodynamic shape optimization is a useful tool in wing design, but the impact of the choice of optimization algorithm and the multimodality of the design space in wing design optimization is still poorly understood. To address this, we benchmark both gradient-based and gradient-free optimization algorithms for computational fluid dynamics based aerodynamic shape optimization problems based on the Common Research Model wing geometry. The aerodynamic model solves the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras turbulence model. The drag coefficient is minimized subject to lift, pitching moment, and geometry constraints, with up to 720 shape variables and 11 twist variables for two mesh sizes. We benchmark six gradient-based and three gradient-free algorithms by comparing both the accuracy of the optima and the computational cost. Most of the optimizers reach similar optima, but the gradient-based methods converge to more accurate solutions at a much lower computational cost. Since multimodality and nonsmoothness of the design space are common arguments for the use of gradient-free methods, we investigate these issues by solving the same optimization problem starting from a series of randomly generated initial geometries, as well as a wing based on the NACA 0012 airfoil with zero twist and constant thickness-to-chord ratio. All the optimizations consistently converge to practically identical results, where the differences in drag are within 0.05%, and the shapes and pressure distributions are very similar. Our overall conclusion is that the design space for wing design optimization with a fixed planform is largely convex, with a very small flat region that is multimodal because of numerical errors. However, this region is so small, and the differences in drag so minor, that the design space can be considered unimodal for all practical purposes.

[1]  Kazuhiro Nakahashi,et al.  Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic Algorithms , 2001, EMO.

[2]  J. Martins,et al.  Benchmarking Optimization Algorithms for Wing Aerodynamic Design Optimization , 2014 .

[3]  Antony Jameson,et al.  Optimum aerodynamic design using the Navier-Stokes equations , 1997 .

[4]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[5]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[6]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[7]  David W. Zingg,et al.  Comparison of B-Spline Surface and Free-Form Deformation Geometry Control for Aerodynamic Optimization , 2017 .

[8]  Darko Vasiljević,et al.  Comparison of optimization algorithms , 2002 .

[9]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[10]  Michael A. Saunders,et al.  User’s Guide For Snopt Version 6, A Fortran Package for Large-Scale Nonlinear Programming∗ , 2002 .

[11]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[12]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[13]  Jean-Antoine Désidéri,et al.  Parallel Genetic Algorithms Applied to Optimum Shape Design in Aeronautics , 1997, Euro-Par.

[14]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[15]  Mark Drela,et al.  Design and optimization method for multi-element airfoils , 1993 .

[16]  R. Dwight,et al.  Efficient and robust algorithms for solution of the adjoint compressible Navier–Stokes equations with applications , 2009 .

[17]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of the Common Research Model Wing-Body-Tail Configuration , 2015 .

[18]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[19]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[20]  Mark Drela,et al.  Pros & Cons of Airfoil Optimization , 1998 .

[21]  Ramesh K. Agarwal,et al.  Shape Optimization of NREL S809 Airfoil for Wind Turbine Blades Using a Multi-Objective Genetic Algorithm , 2014 .

[22]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[23]  D. Zingg,et al.  Multimodality and Global Optimization in Aerodynamic Design , 2013 .

[24]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[25]  D. P. Young,et al.  Study Based on the AIAA Aerodynamic Design Optimization Discussion Group Test Cases , 2015 .

[26]  R. Liem,et al.  Expected drag minimization for aerodynamic design optimization based on aircraft operational data , 2017 .

[27]  J. Martins,et al.  Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization , 2017 .

[28]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[29]  David W. Zingg,et al.  Application of Jetstream to a Suite of Aerodynamic Shape Optimization Problems , 2014 .

[30]  Joaquim R. R. A. Martins,et al.  Strategies for solving high-fidelity aerodynamic shape optimization problems , 2014 .

[31]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[32]  Joaquim R. R. A. Martins,et al.  Multimodality in aerodynamic wing design optimization , 2017 .

[33]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[34]  Joaquim R. R. A. Martins,et al.  Aerostructural Optimization of Nonplanar Lifting Surfaces , 2010 .

[35]  Hugo Gagnon,et al.  Aerodynamic Shape Optimization of Benchmark Problems Using Jetstream , 2015 .

[36]  Graeme J. Kennedy,et al.  High aspect ratiowing design: Optimal aerostructural tradeoffs for the next generation of materials , 2014 .

[37]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[38]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[39]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[40]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[41]  Luis Santos,et al.  Aerodynamic shape optimization using the adjoint method , 2007 .

[42]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[43]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[44]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[45]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[46]  Joaquim R. R. A. Martins,et al.  High-fidelity aerostructural optimization considering buffet onset , 2015 .

[47]  M. Hafez,et al.  Frontiers of Computational Fluid Dynamics 2002 , 2001 .

[48]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[49]  C. Mader,et al.  Stability-Constrained Aerodynamic Shape Optimization of Flying Wings , 2013 .

[50]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[51]  D. I. Jones,et al.  Comparison of optimization algorithms , 1984 .

[52]  Ali Elham,et al.  Adjoint quasi-three-dimensional aerodynamic solver for multi-fidelity wing aerodynamic shape optimization , 2015 .

[53]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[54]  D. Zingg,et al.  Investigation into Aerodynamic Shape Optimization of Planar and Nonplanar Wings , 2018 .

[55]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[56]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[57]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[58]  Ramesh K. Agarwal,et al.  Shape Optimization of NREL S809 Airfoil for Wind Turbine Blades Using a Multiobjective Genetic Algorithm , 2014 .

[59]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[60]  Shigeru Obayashi,et al.  Comparison of Optimization Algorithms for Aerodynamic Shape Design , 1996 .

[61]  Joaquim R. R. A. Martins,et al.  Aeroservoelastic Design Optimization of a Flexible Wing , 2012 .

[62]  Richard P. Dwight,et al.  Applications of a discrete viscous adjoint method for aerodynamic shape optimisation of 3D configurations , 2011, CEAS Aeronautical Journal.

[63]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[64]  Sivakumaran Nadarajah,et al.  Adjoint-Based Aerodynamic Optimization of Benchmark CRM Wing , 2017 .

[65]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[66]  Raymond M. Hicks,et al.  Wing design by numerical optimization , 1977 .

[67]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[68]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[69]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[70]  Joaquim R. R. A. Martins,et al.  Towards High-Fidelity Aerostructural Optimization using a coupled ADjoint Approach , 2008 .

[71]  T. Pulliam,et al.  Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm , 2001 .

[72]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[73]  Jacques Peter,et al.  Gradient-Based Optimization of CRM Wing-alone and Wing-body-tail Configurations by RANS Adjoint Technique , 2016 .

[74]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[75]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .