Constraints on primordial black holes: The importance of accretion

We consider the constraints on the fraction of dark matter in the universe in the form of primordial black holes taking into account the crucial role of accretion which may change both their mass and mass function. We show that accretion may drastically weaken the constraints at the present epoch for primordial black holes with masses larger than a few solar masses.

[1]  Mar Mezcua,et al.  Black Holes , 2015, Astrophysical Wonders.

[2]  Duncan A. Brown,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2020, Computing in Science & Engineering.

[3]  P. Pani,et al.  Primordial black holes confront LIGO/Virgo data: current situation , 2020, Journal of Cosmology and Astroparticle Physics.

[4]  G. Hasinger Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[5]  P. Pani,et al.  The evolution of primordial black holes and their final observable spins , 2020, Journal of Cosmology and Astroparticle Physics.

[6]  V. Poulin,et al.  Cosmic microwave background bounds on primordial black holes including dark matter halo accretion , 2020, 2002.10771.

[7]  D. Inman,et al.  Early structure formation in primordial black hole cosmologies , 2019, Physical Review D.

[8]  M. Raidal,et al.  Small-scale structure of primordial black hole dark matter and its implications for accretion , 2019, Physical Review D.

[9]  A. Riotto,et al.  Primordial black holes from broad spectra: abundance and clustering , 2019, Journal of Cosmology and Astroparticle Physics.

[10]  M. Viel,et al.  Lyman-α Forest Constraints on Primordial Black Holes as Dark Matter. , 2019, Physical review letters.

[11]  C. Byrnes,et al.  WIMPs and stellar-mass primordial black holes are incompatible , 2019, Physical Review D.

[12]  R. Cai,et al.  Effects of the merger history on the merger rate density of primordial black hole binaries , 2019, The European Physical Journal C.

[13]  G. Bertone,et al.  Multi-wavelength astronomical searches for primordial black holes , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[15]  N. V. Keerthana,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018, 1811.12907.

[16]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[17]  P. Serpico,et al.  On the merger rate of primordial black holes: effects of nearest neighbours distribution and clustering , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  V. Desjacques,et al.  Spatial clustering of primordial black holes , 2018, Physical Review D.

[19]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[20]  Yacine Ali-Haïmoud Correlation Function of High-Threshold Regions and Application to the Initial Small-Scale Clustering of Primordial Black Holes. , 2018, Physical review letters.

[21]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[22]  U. Seljak,et al.  Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae. , 2017, Physical review letters.

[23]  J. Garc'ia-Bellido,et al.  Constraints from microlensing experiments on clustered primordial black holes , 2017, 1710.04694.

[24]  J. Diego,et al.  Understanding caustic crossings in giant arcs: Characteristic scales, event rates, and constraints on compact dark matter , 2017, 1710.00148.

[25]  L. Verde,et al.  Primordial black holes as dark matter: converting constraints from monochromatic to extended mass distributions , 2017, 1709.07467.

[26]  Jhu,et al.  Merger rate of primordial black-hole binaries , 2017, 1709.06576.

[27]  M. Raidal,et al.  Primordial black hole constraints for extended mass functions , 2017, 1705.05567.

[28]  Y. Inoue,et al.  New X-ray bound on density of primordial black holes , 2017, 1705.00791.

[29]  A. Loeb,et al.  Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. , 2017, Physical review letters.

[30]  M. Kamionkowski,et al.  Cosmic microwave background limits on accreting primordial black holes , 2016, 1612.05644.

[31]  G. Bertone,et al.  Searching for Primordial Black Holes in the Radio and X-Ray Sky. , 2016, Physical review letters.

[32]  Bing Zhang,et al.  Cosmological evolution of primordial black holes , 2016, 1702.08069.

[33]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[34]  Timothy D. Brandt CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.

[35]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[36]  V. Cardoso,et al.  Can environmental effects spoil precision gravitational-wave astrophysics? , 2014, 1404.7149.

[37]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[38]  M. Irwin,et al.  On the reported death of the MACHO era , 2009, 0903.1644.

[39]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[40]  M. Ricotti Bondi Accretion in the Early Universe , 2007, 0706.0864.

[41]  J. Ostriker,et al.  Growth of Structure Seeded by Primordial Black Holes , 2006, astro-ph/0608642.

[42]  Z. Haiman,et al.  Fossil H ii regions: self-limiting star formation at high redshift , 2003, astro-ph/0307135.

[43]  National Radio Astronomy Observatory,et al.  Limits on the cosmological abundance of supermassive compact objects from a search for multiple imaging in compact radio sources. , 2001, Physical review letters.

[44]  A. Tomaney,et al.  MACHO Project Limits on Black Hole Dark Matter in the 1-30 M☉ Range , 2000, astro-ph/0011506.

[45]  A. Drake,et al.  The MACHO Project: Microlensing Detection Efficiency , 2000, astro-ph/0003392.

[46]  E. Bertschinger Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .

[47]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[48]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[49]  Saul A. Teukolsky,et al.  White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1983 .