Representing All Stable Matchings by Walking a Maximal Chain

The seminal book of Gusfield and Irving [GI89] provides a compact and algorithmically useful way to represent the collection of stable matches corresponding to a given set of preferences. In this paper, we reinterpret the main results of [GI89], giving a new proof of the characterization which is able to bypass a lot of the "theory building" of the original works. We also provide a streamlined and efficient way to compute this representation. Our proofs and algorithms emphasize the connection to well-known properties of the deferred acceptance algorithm.