Improved thermoelectric power factor in metal-based superlattices.

In this paper we present a detailed theory of electron and thermoelectric transport perpendicular to heterostructure superlattices. This nonlinear transport regime above barriers is also called heterostructure thermionic emission. We show that metal-based superlattices with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature). A key parameter to achieving high performance is the nonconservation of lateral momentum during the thermionic emission process. Conservation of lateral momentum is a consequence of translational symmetry in the plane of the superlattice. We also discuss the use of nonplanar barriers and embedded quantum dot structures to achieve high thermoelectric conversion efficiency.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  V. Nemchinsky,et al.  Thermoelectric figure of merit of metal–semiconductor barrier structure based on energy relaxation length , 1998 .

[3]  G. Chen,et al.  Chapter 5 - Phonon Transport in Low-Dimensional Structures , 2001 .

[4]  A. Majumdar,et al.  MICROSCALE THERMOPHYSICAL ENGINEERING , 1997 .

[5]  M. D. Ulrich,et al.  Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration , 2001 .

[6]  Ali Shakouri,et al.  Electronic and thermoelectric transport in semiconductor and metallic superlattices , 2004 .

[7]  Shih-Yen Lin,et al.  Comparison of InAs/GaAs Quantum Dot Infrared Photodetector and GaAs/(AlGa)As Superlattice Infrared Photodetector , 2001 .

[8]  Darryl L. Smith,et al.  Ballistic Electron Emission Microscopy for Nonepitaxial Metal/Semiconductor Interfaces , 1998 .

[9]  G. Zeng NONEQUILIBRIUM PHONON AND ELECTRON TRANSPORT IN HETEROSTRUCTURES AND SUPERLATTICES , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[10]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[11]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[12]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  Christoph H. Grein,et al.  Multilayer thermoelectric refrigeration in Hg1−xCdxTe superlattices , 1999 .

[15]  Cronin B. Vining,et al.  The B factor in multilayer thermionic refrigeration , 1999 .

[16]  J. Fleurial Proceedings of 15th International Conference on Thermoelectrics , 1996 .

[17]  Gerald D. Mahan,et al.  Multilayer Thermionic Refrigeration , 1998 .