Programmable superpositions of Ising configurations

We present a framework to prepare superpositions of bit strings, i.e., many-body spin configurations, with deterministic programmable probabilities. The spin configurations are encoded in the degenerate ground states of the lattice-gauge representation of an all-to-all connected Ising spin glass. The ground state manifold is invariant under variations of the gauge degrees of freedom, which take the form of four-body parity constraints. Our framework makes use of these degrees of freedom by individually tuning them to dynamically prepare programmable superpositions. The dynamics combines an adiabatic protocol with controlled diabatic transitions. We derive an effective model that allows one to determine the control parameters efficiently even for large system sizes.

[1]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[2]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[3]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[4]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[5]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[6]  W. Zurek Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions , 1993 .

[7]  Wojciech Hubert Zurek,et al.  Cosmological experiments in condensed matter systems , 1996 .

[8]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[9]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[10]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[11]  The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. , 2004, Physical review letters.

[12]  F. Schmidt-Kaler,et al.  Robust state preparation of a single trapped ion by adiabatic passage , 2005, quant-ph/0508159.

[13]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[14]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[15]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[16]  H. Katzgraber,et al.  Ground-state statistics from annealing algorithms: quantum versus classical approaches , 2009 .

[17]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[18]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[19]  A. K. Chandra,et al.  Quantum quenching, annealing and computation , 2010 .

[20]  A. Polkovnikov,et al.  Adiabatic Perturbation Theory: From Landau–Zener Problem to Quenching Through a Quantum Critical Point , 2009, 0910.2236.

[21]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[22]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[23]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[24]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[25]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[26]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[27]  C. Jarzynski,et al.  Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving , 2014, 1401.1184.

[28]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[29]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[30]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[31]  Masoud Mohseni,et al.  Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .

[32]  M. Amin Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.

[33]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[34]  Shruti Puri,et al.  Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving , 2017, npj Quantum Information.

[35]  I. Bloch,et al.  Many-body interferometry of a Rydberg-dressed spin lattice , 2016, Nature Physics.

[36]  Andrea Rocchetto,et al.  Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer , 2016, Science Advances.

[37]  P. Zoller,et al.  A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions , 2016, 1604.02359.

[38]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[39]  P. Zoller,et al.  A coherent quantum annealer with Rydberg atoms , 2016, Nature Communications.

[40]  A. Polkovnikov,et al.  Minimizing irreversible losses in quantum systems by local counterdiabatic driving , 2016, Proceedings of the National Academy of Sciences.

[41]  H. Katzgraber,et al.  Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. , 2016, Physical review letters.

[42]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[43]  C. Jarzynski,et al.  Shortcuts to adiabaticity using flow fields , 2017, 1707.01490.