Symbolic Merge-and-Shrink for Cost-Optimal Planning

Symbolic PDBs and Merge-and-Shrink (M&S) are two approaches to derive admissible heuristics for optimal planning. We present a combination of these techniques, Symbolic Merge-and-Shrink (SM&S), which uses M&S abstractions as a relaxation criterion for a symbolic backward search. Empirical evaluation shows that SM&S has the strengths of both techniques deriving heuristics at least as good as the best of them for most domains.

[1]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[2]  S. Edelkamp Planning with Pattern Databases , 2014 .

[3]  Stefan Edelkamp,et al.  Model Checking and Artificial Intelligence, 4th Workshop, MoChArt IV, Riva del Garda, Italy, August 29, 2006, Revised Selected and Invited Papers , 2007, MoChArt.

[4]  Stefan Edelkamp,et al.  Symbolic A* Search with Pattern Databases and the Merge-and-Shrink Abstraction , 2012, ECAI.

[5]  Robert C. Holte,et al.  The Compression Power of Symbolic Pattern Databases , 2008, ICAPS.

[6]  Ariel Felner,et al.  Combining Perimeter Search and Pattern Database Abstractions , 2007, SARA.

[7]  Jonathan Schaeffer,et al.  Partial Pattern Databases , 2007, SARA.

[8]  Stefan Edelkamp,et al.  Transition Trees for Cost-Optimal Symbolic Planning , 2013, ICAPS.

[9]  Bernd Finkbeiner,et al.  Directed model checking with distance-preserving abstractions , 2006, International Journal on Software Tools for Technology Transfer.

[10]  Raz Nissim The Merge-and-Shrink Planner : Bisimulation-based Abstraction for Optimal Planning , 2011 .

[11]  Jörg Hoffmann,et al.  Fast Downward Stone Soup , 2011 .

[12]  Larry S. Davis,et al.  Pattern Databases , 1979, Data Base Design Techniques II.

[13]  E BryantRandal Graph-Based Algorithms for Boolean Function Manipulation , 1986 .

[14]  Enrico Macii,et al.  Algebric Decision Diagrams and Their Applications , 1997, ICCAD '93.

[15]  Giovanni Manzini,et al.  BIDA: An Improved Perimeter Search Algorithm , 1995, Artif. Intell..

[16]  Jörg Hoffmann,et al.  Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning , 2011, IJCAI.

[17]  Stefan Edelkamp,et al.  Improving Cost-Optimal Domain-Independent Symbolic Planning , 2011, AAAI.

[18]  Carlos Linares López Multi-valued Pattern Databases , 2008, ECAI.

[19]  Stefan Edelkamp,et al.  Automated Creation of Pattern Database Search Heuristics , 2007, MoChArt.

[20]  Peter C. Nelson,et al.  Perimeter Search , 1994, Artif. Intell..

[21]  Patrik Haslum,et al.  Flexible Abstraction Heuristics for Optimal Sequential Planning , 2007, ICAPS.

[22]  Malte Helmert,et al.  Efficient Implementation of Pattern Database Heuristics for Classical Planning , 2021, SOCS.

[23]  Patrik Haslum,et al.  Domain-Independent Construction of Pattern Database Heuristics for Cost-Optimal Planning , 2007, AAAI.

[24]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[25]  Jörg Hoffmann,et al.  How to Relax a Bisimulation? , 2012, ICAPS.

[26]  Stefan Edelkamp,et al.  External Symbolic Heuristic Search with Pattern Databases , 2005, ICAPS.