Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos

The simultaneous expression of the hunchback gene in the numerous nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in living organisms. A recently developed MS2-MCP technique for imaging nascent messenger RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of the morphogens by the hunchback promoter takes place during very short cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in short time traces of transcription. Additionally, the relationship between the measured signal and the promoter state depends on the molecular design of the reporting probe. We develop an analysis approach based on tailor made autocorrelation functions that overcomes the short trace problems and quantifies the dynamics of transcription initiation. Based on live imaging data, we identify signatures of bursty transcription initiation from the hunchback promoter. We show that the precision of the expression of the hunchback gene to measure its position along the anterior-posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting additional post-transcriptional averaging mechanisms to provide the precision observed in fixed embryos.

[1]  Current Biology , 2012, Current Biology.

[2]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[3]  Hernan G. Garcia,et al.  Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos , 2014, Proceedings of the National Academy of Sciences.

[4]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[5]  Olli Yli-Harja,et al.  Regulation of mean and noise of the in vivo kinetics of transcription under the control of the lac/ara‐1 promoter , 2012, FEBS letters.

[6]  Ned S Wingreen,et al.  Protein-level fluctuation correlation at the microcolony level and its application to the Vibrio harveyi quorum-sensing circuit. , 2011, Biophysical journal.

[7]  T. Creighton Methods in Enzymology , 1968, The Yale Journal of Biology and Medicine.

[8]  Shawn C. Little,et al.  Precise Developmental Gene Expression Arises from Globally Stochastic Transcriptional Activity , 2013, Cell.

[9]  Michael Levine,et al.  Enhancer Control of Transcriptional Bursting , 2016, Cell.

[10]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[11]  Hiroki Murakami,et al.  Stable, Precise, and Reproducible Patterning of Bicoid and Hunchback Molecules in the Early Drosophila Embryo , 2009, PLoS Comput. Biol..

[12]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[13]  Ovidiu Radulescu,et al.  Transcriptional Memory in the Drosophila Embryo , 2017, Mechanisms of Development.

[14]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[15]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Sarah Valenti,et al.  Extinction risk and conservation of the world’s sharks and rays , 2013, eLife.

[18]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[19]  Shasha Chong,et al.  Mechanism of Transcriptional Bursting in Bacteria , 2014, Cell.

[20]  Valérie Doye,et al.  In vivo dynamics of Drosophila nuclear envelope components. , 2008, Molecular biology of the cell.

[21]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[22]  M. Elowitz,et al.  Regulatory activity revealed by dynamic correlations in gene expression noise , 2008, Nature Genetics.

[23]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[24]  Olli Yli-Harja,et al.  Dynamics of transcription driven by the tetA promoter, one event at a time, in live Escherichia coli cells , 2012, Nucleic acids research.

[25]  Thomas Ried,et al.  From Silencing to Gene Expression Real-Time Analysis in Single Cells , 2004, Cell.

[26]  Nacho Molina,et al.  Mammalian Genes Are Transcribed with Widely Different Bursting Kinetics , 2011, Science.

[27]  Hernan G. Garcia,et al.  The embryo as a laboratory: quantifying transcription in Drosophila. , 2014, Trends in genetics : TIG.

[28]  Nathalie Dostatni,et al.  The Bicoid Morphogen System , 2010, Current Biology.

[29]  Nature Genetics , 1991, Nature.

[30]  Mikhail Tikhonov,et al.  Only accessible information is useful: insights from gradient-mediated patterning , 2015, Royal Society Open Science.

[31]  S. Lowen The Biophysical Journal , 1960, Nature.

[32]  A. van Oudenaarden,et al.  Using Gene Expression Noise to Understand Gene Regulation , 2012, Science.

[33]  Felix Naef,et al.  Structure of silent transcription intervals and noise characteristics of mammalian genes , 2015, Molecular systems biology.

[34]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[35]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[36]  A. Coulon,et al.  Kinetic competition during the transcription cycle results in stochastic RNA processing , 2014, eLife.

[37]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[38]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[39]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[40]  Jeremy Gunawardena,et al.  Information Integration and Energy Expenditure in Gene Regulation , 2016, Cell.

[41]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[42]  M. Kreitman,et al.  Adaptation of the length scale and amplitude of the Bicoid gradient profile to achieve robust patterning in abnormally large Drosophila melanogaster embryos , 2014, Development.

[43]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[44]  Wei Wang,et al.  A Multiscale Investigation of Bicoid-Dependent Transcriptional Events in Drosophila Embryos , 2011, PloS one.

[45]  A. Pühler,et al.  Molecular systems biology , 2007 .

[46]  Hernan G. Garcia,et al.  Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning , 2013, Current Biology.

[47]  P. R. ten Wolde,et al.  Role of spatial averaging in the precision of gene expression patterns. , 2009, Physical review letters.

[48]  Michael B. Elowitz,et al.  Combinatorial gene regulation by modulation of relative pulse timing , 2015, Nature.

[49]  Michael W. Perry,et al.  Precision of Hunchback Expression in the Drosophila Embryo , 2012, Current Biology.

[50]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Bartosz Walter,et al.  Moribund Ants Leave Their Nests to Die in Social Isolation , 2010, Current Biology.

[52]  D. R. Larson,et al.  Fluctuation Analysis: Dissecting Transcriptional Kinetics with Signal Theory. , 2016, Methods in enzymology.

[53]  E. Triphosphat,et al.  FEBS Letters , 1987, FEBS Letters.

[54]  Aleksandra M. Walczak,et al.  New methods to image transcription in living fly embryos: the insights so far, and the prospects , 2016, Wiley interdisciplinary reviews. Developmental biology.

[55]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.

[56]  Aleksandra M. Walczak,et al.  Live Imaging of Bicoid-Dependent Transcription in Drosophila Embryos , 2013, Current Biology.

[57]  Geoffrey North Current Biology at 20 , 2010, Current Biology.