Flexible short-wavelength infrared photodetector based on extrinsic Sb2Se3

[1]  R. Schropp,et al.  Sb2Se3 Thin‐Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology , 2022, Advanced materials.

[2]  M. Kumar,et al.  Large area, self-powered, flexible, fast, and broadband photodetector enabled by the SnSe-Sb2Se3 heterostructure , 2022, Surfaces and Interfaces.

[3]  W. Mai,et al.  Underwater Multispectral Computational Imaging Based on a Broadband Water-Resistant Sb2Se3 Heterojunction Photodetector. , 2022, ACS nano.

[4]  Yang Tan,et al.  Schottky-Contacted High-Performance GaSb Nanowires Photodetectors Enabled by Lead-Free All-Inorganic Perovskites Decoration. , 2022, Small.

[5]  Jiang Tang,et al.  Heterojunction Annealing Enabling Record Open‐Circuit Voltage in Antimony Triselenide Solar Cells , 2022, Advanced materials.

[6]  Xianghua Zhang,et al.  Crystal Growth Promotion and Defects Healing Enable Minimum Open‐Circuit Voltage Deficit in Antimony Selenide Solar Cells , 2022, Advanced science.

[7]  Feng Chen,et al.  Substrate‐Free Chemical Vapor Deposition of Large‐Scale III–V Nanowires for High‐Performance Transistors and Broad‐Spectrum Photodetectors , 2022, Advanced Optical Materials.

[8]  Zhiqiang Li,et al.  High-responsivity, self-driven visible-near infrared Sb2Se3 nanorod array photodetector. , 2021, Optics express.

[9]  Xianghua Zhang,et al.  Quasi-Vertically Oriented Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization. , 2021, ACS applied materials & interfaces.

[10]  Jiang Tang,et al.  One-dimensional Sb2Se3 enabling ultra-flexible solar cells and mini-modules for IoT applications , 2021 .

[11]  X. Gong,et al.  More Se Vacancies in Sb2 Se3 under Se-Rich Conditions: An Abnormal Behavior Induced by Defect-Correlation in Compensated Compound Semiconductors. , 2021, Small.

[12]  Yujia Zeng,et al.  A tailorable polarity-flipping response in self-powered, flexible Sb2Se3/ZnO bilayer photodetectors , 2021 .

[13]  Litao Sun,et al.  Stoichiometric effect on electrical and near-infrared photodetection properties of full-composition-range GaAs1−xSbx nanowires , 2021, Nano Research.

[14]  Jiang Tang,et al.  Over 7% Efficiency of Sb 2 (S,Se) 3 Solar Cells via V‐Shaped Bandgap Engineering , 2020 .

[15]  Shaopeng Li,et al.  Solution-Processed Sb2Se3 on TiO2 Thin Films Toward Oxidation- and Moisture-Resistant, Self-Powered Photodetectors. , 2020, ACS applied materials & interfaces.

[16]  Hong-li Ma,et al.  An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells , 2020, Chemical Engineering Journal.

[17]  M. Green,et al.  Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency , 2020, Nature Energy.

[18]  Gwo-Ching Wang,et al.  High-Crystallinity Epitaxial Sb2Se3 Thin Film on Mica for Flexible Near-Infrared Photodetectors. , 2020, ACS applied materials & interfaces.

[19]  Hong-li Ma,et al.  Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV , 2020 .

[20]  X. Zu,et al.  Sodium‐Mediated Epitaxial Growth of 2D Ultrathin Sb2Se3 Flakes for Broadband Photodetection , 2020, Advanced Functional Materials.

[21]  O. Rubel,et al.  Deciphering the Role of Key Defects in Sb2Se3, a Promising Candidate for Chalcogenide-Based Solar Cells , 2020 .

[22]  Fu Li,et al.  One-Dimensional Sb2Se3 Enabling a Highly Flexible Photodiode for Light-Source-Free Heart Rate Detection , 2020 .

[23]  Y. Fu,et al.  Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film , 2019, Nano Energy.

[24]  Jiang Tang,et al.  Orientation Engineering in Low‐Dimensional Crystal‐Structural Materials via Seed Screening , 2019, Advanced materials.

[25]  Jiang Tang,et al.  7.5% n–i–p Sb2Se3 solar cells with CuSCN as a hole-transport layer , 2019, Journal of Materials Chemistry A.

[26]  Jiang Tang,et al.  Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3. , 2019, ACS applied materials & interfaces.

[27]  R. Schropp,et al.  9.2%-efficient core-shell structured antimony selenide nanorod array solar cells , 2019, Nature Communications.

[28]  Jiang Tang,et al.  Efficiency Improvement of Sb2Se3 Solar Cells via Grain Boundary Inversion , 2018, ACS Energy Letters.

[29]  Guangda Niu,et al.  Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency , 2018, Nature Communications.

[30]  Y. Mai,et al.  Self-powered, high-speed Sb2Se3/Si heterojunction photodetector with close spaced sublimation processed Sb2Se3 layer , 2018 .

[31]  Liang Gao,et al.  Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer , 2017, Nature Energy.

[32]  Liang Gao,et al.  Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics , 2017 .

[33]  Dayong Jiang,et al.  High-performance flexible photodetectors based on single-crystalline Sb2Se3 nanowires , 2016 .

[34]  Tao Ding,et al.  Controlled Synthesis of Ultrathin Sb2Se3 Nanowires and Application for Flexible Photodetectors , 2015, Advanced science.

[35]  Jiang Tang,et al.  Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries , 2015, Nature Photonics.

[36]  I. Mártil,et al.  Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector , 2014 .

[37]  Jonathan P. Mailoa,et al.  Enhancing the Infrared Photoresponse of Silicon by Controlling the Fermi Level Location within an Impurity Band , 2014 .

[38]  Jonathan P. Mailoa,et al.  Room-temperature sub-band gap optoelectronic response of hyperdoped silicon , 2014, Nature Communications.

[39]  M. Scarpulla,et al.  Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films , 2012 .

[40]  Tianyou Zhai,et al.  Single‐Crystalline Sb2Se3 Nanowires for High‐Performance Field Emitters and Photodetectors , 2010, Advanced materials.

[41]  E. Mazur,et al.  Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation , 2004 .

[42]  N. Sclar Extrinsic silicon detectors for 3–5 and 8–14 μm , 1976 .

[43]  R. Soref Extrinsic ir Photoconductivity of Si Doped with B, Al, Ga, P, As, or Sb , 1967 .

[44]  Qinghua Zhang,et al.  Infrared Photodetectors: Extrinsic Photoconduction Induced Short‐Wavelength Infrared Photodetectors Based on Ge‐Based Chalcogenides (Small 4/2021) , 2021 .

[45]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[46]  N. Sclar,et al.  Properties of doped silicon and Germanium infrared detectors , 1984 .