Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma

[1]  J. Malter,et al.  Alterations in the RB Pathway With Inactivation of RB1 Characterize Glioblastomas With a Primitive Neuronal Component. , 2021, Journal of neuropathology and experimental neurology.

[2]  S. Bakas,et al.  Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine , 2021, Cancers.

[3]  Anna Luisa Di Stefano,et al.  Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities , 2021, Nature Cancer.

[4]  R. Verhaak,et al.  New hints towards a precision medicine strategy for IDH wild-type Glioblastoma. , 2020, Annals of oncology : official journal of the European Society for Medical Oncology.

[5]  S. Bakas,et al.  Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review , 2020, Journal of magnetic resonance imaging : JMRI.

[6]  Siddhesh P. Thakur,et al.  Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training☆ , 2020, NeuroImage.

[7]  Christos Davatzikos,et al.  Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities , 2020, Journal of medical imaging.

[8]  Christos Davatzikos,et al.  AI-based Prognostic Imaging Biomarkers for Precision Neurooncology: the ReSPOND Consortium. , 2020, Neuro-oncology.

[9]  R. Steenbakkers,et al.  The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. , 2020, Radiology.

[10]  Christos Davatzikos,et al.  Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma , 2020, JCO clinical cancer informatics.

[11]  Christos Davatzikos,et al.  The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview , 2019, BrainLes@MICCAI.

[12]  Jeffrey H. Chuang,et al.  LONGITUDINAL MOLECULAR TRAJECTORIES OF DIFFUSE GLIOMA IN ADULTS , 2019, Nature.

[13]  Lena Maier-Hein,et al.  BIAS: Transparent reporting of biomedical image analysis challenges , 2019, Medical Image Analysis.

[14]  Patrick C. Staples,et al.  An Online Calculator for the Prediction of Survival in Glioblastoma Patients Using Classical Statistics and Machine Learning , 2019, Neurosurgery.

[15]  Bjarne Winther Kristensen,et al.  Do we really know who has an MGMT methylated glioma? Results of an international survey regarding use of MGMT analyses for glioma , 2019, Neuro-oncology practice.

[16]  Christian Desrosiers,et al.  Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma , 2019, Cancers.

[17]  Lorenzo Trippa,et al.  Design and Evaluation of an External Control Arm Using Prior Clinical Trials and Real-World Data , 2019, Clinical Cancer Research.

[18]  Zev A. Binder,et al.  Molecular Neuropathology in Practice: Clinical Profiling and Integrative Analysis of Molecular Alterations in Glioblastoma , 2019, Academic pathology.

[19]  A. Bentivegna,et al.  Role of Notch Signaling Pathway in Glioblastoma Pathogenesis , 2019, Cancers.

[20]  M. Gilbert,et al.  MGMT Promoter Methylation Cutoff with Safety Margin for Selecting Glioblastoma Patients into Trials Omitting Temozolomide: A Pooled Analysis of Four Clinical Trials , 2018, Clinical Cancer Research.

[21]  Seok-Gu Kang,et al.  Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. , 2018, Radiology.

[22]  Jennie W. Taylor,et al.  Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma , 2018, Journal of Neuro-Oncology.

[23]  Raymond Y Huang,et al.  Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor for overall survival in newly diagnosed glioblastoma , 2018, Neuro-oncology.

[24]  Christos Davatzikos,et al.  Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. , 2018, Cancer cell.

[25]  David T. W. Jones,et al.  Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma , 2018, Neuro-oncology.

[26]  Alejandro F. Frangi,et al.  Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI , 2018, Journal of magnetic resonance imaging : JMRI.

[27]  F. Lieberman,et al.  Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial , 2017, JAMA.

[28]  G. Reifenberger,et al.  European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. , 2017, The Lancet. Oncology.

[29]  Jennie W. Taylor,et al.  Clinical trial endpoints for patients with gliomas. , 2017, Neuro-oncology practice.

[30]  B. Taylor,et al.  Implementing Genome-Driven Oncology , 2017, Cell.

[31]  Stefan Leger,et al.  Image biomarker standardisation initiative version 1 . 4 , 2016, 1612.07003.

[32]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[33]  Prateek Prasanna,et al.  Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor , 2016, Scientific Reports.

[34]  Paul A. Yushkevich,et al.  FAST AUTOMATIC SEGMENTATION OF HIPPOCAMPAL SUBFIELDS AND MEDIAL TEMPORAL LOBE SUBREGIONS IN 3 TESLA AND 7 TESLA T2-WEIGHTED MRI , 2016, Alzheimer's & Dementia.

[35]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[36]  Luke Macyszyn,et al.  Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. , 2016, Neuro-oncology.

[37]  D. Owens,et al.  Use of a basal-plus insulin regimen in persons with type 2 diabetes stratified by age and body mass index: A pooled analysis of four clinical trials. , 2016, Primary care diabetes.

[38]  Jerzy K. Kulski,et al.  Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications , 2016 .

[39]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.

[40]  S. South,et al.  DNA copy number analysis of Grade II–III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status , 2015, Acta neuropathologica communications.

[41]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[42]  Scott N. Hwang,et al.  Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. , 2014, Radiology.

[43]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[44]  Giovanni Tesoriere,et al.  RB1 in cancer: Different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis , 2013, Journal of cellular physiology.

[45]  David Gutman,et al.  Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. , 2013, Radiology.

[46]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[47]  Keith Paulsen,et al.  Genetics of glioblastoma: a window into its imaging and histopathologic variability. , 2011, Radiographics : a review publication of the Radiological Society of North America, Inc.

[48]  A. Capobianco,et al.  Notch signalling in solid tumours: a little bit of everything but not all the time , 2011, Nature Reviews Cancer.

[49]  Trevor Hastie,et al.  Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. , 2011, Journal of statistical software.

[50]  D. Scheie,et al.  Overall survival, prognostic factors, and repeated surgery in a consecutive series of 516 patients with glioblastoma multiforme , 2010, Acta neurologica Scandinavica.

[51]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[52]  Adolf Pfefferbaum,et al.  The SRI24 multichannel atlas of normal adult human brain structure , 2009, Human brain mapping.

[53]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[54]  Christos Davatzikos,et al.  Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome , 2018, Journal of medical imaging.

[55]  G. Reifenberger,et al.  MGMT promoter methylation in malignant gliomas: ready for personalized medicine? , 2010, Nature Reviews Neurology.

[56]  David A. Glanzer,et al.  Technical Overview , 2008 .