Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae).

[1]  J. Meulenbelt,et al.  Differential Roles of Phase I and Phase II Enzymes in 3,4-Methylendioxymethamphetamine-Induced Cytotoxicity , 2010, Drug Metabolism and Disposition.

[2]  S. Goławska,et al.  Antioxidant defense mechanisms of cereal aphids based on ascorbate and ascorbate peroxidase , 2009, Biologia.

[3]  B. Leszczyński,et al.  Biochemical markers of oxidative stress within tissues of cereal aphids. , 2009, Acta Biologica Hungarica.

[4]  P. Ashton,et al.  The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry , 2009, Proteomics.

[5]  I. Łukasik Effect of host plant alternation on some adaptive enzymes of the bird cherry–oat aphid, Rhopalosiphum padi (L.) , 2009, Journal of Pest Science.

[6]  M. J. Moloi,et al.  Antioxidative enzymes and the Russian wheat aphid (Diuraphis noxia) resistance response in wheat (Triticum aestivum). , 2008, Plant biology.

[7]  Jia-Wei Wang,et al.  Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol , 2007, Nature Biotechnology.

[8]  M. Dearing,et al.  Xenobiotic Metabolism of Plant Secondary Compounds in Oak (Quercus Agrifolia) by Specialist and Generalist Woodrat Herbivores, Genus Neotoma , 2007, Journal of Chemical Ecology.

[9]  I. Lukasik Changes in activity of superoxide dismutase and catalase within cereal aphids in response to plant o‐dihydroxyphenols , 2007 .

[10]  May R Berenbaum,et al.  Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. , 2007, Annual review of entomology.

[11]  M. Berenbaum,et al.  Allelochemical Induction of Cytochrome P450 Monooxygenases and Amelioration of Xenobiotic Toxicity in Helicoverpa zea , 2007, Journal of Chemical Ecology.

[12]  Juan D. López,et al.  Effect of Racemic and (+)- and (−)-Gossypol on the Survival and Development of Helicoverpa zea Larvae , 2006, Journal of Chemical Ecology.

[13]  Futie Zhang,et al.  Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants. , 2005, Archives of insect biochemistry and physiology.

[14]  E. Haubruge,et al.  Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. , 2005, Archives of insect biochemistry and physiology.

[15]  Tong‐Xian Liu,et al.  Molecular strategies of plant defense and insect counter‐defense , 2005 .

[16]  A. Dixon,et al.  Detoxification of cereal plant allelochemicals by aphids: Activity and molecular weights of glutathioneS-transferase in three species of cereal aphids , 1994, Journal of Chemical Ecology.

[17]  Q. Cai,et al.  Contribution of indole alkaloids to Sitobion avenae (F.) resistance in wheat , 2004 .

[18]  H. Niemeyer,et al.  Effect of Two Wheat Cultivars Differing in Hydroxamic Acid Concentration on Detoxification Metabolism in the AphidSitobion avenae , 2000, Journal of Chemical Ecology.

[19]  H. Niemeyer,et al.  Effect of Dimboa, a Hydroxamic Acid from Cereals, on Peroxisomal and Mitochondrial Enzymes from Aphids: Evidence for the Presence of Peroxisomes in Aphids , 1999, Journal of Chemical Ecology.

[20]  M. Snyder,et al.  Causal connection between detoxification enzyme activity and consumption of a toxic plant compound , 1996, Journal of Comparative Physiology A.

[21]  G. Felton,et al.  Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses , 1991, Journal of Chemical Ecology.

[22]  A. Dixon,et al.  Changes in bird cherry-oat aphid metabolism while occurring on primary host. , 2004 .

[23]  X. Ni,et al.  Possible roles of esterase, glutathione S‐transferase, and superoxide dismutase activities in understanding aphid–cereal interactions , 2003 .

[24]  S. Mukanganyama,et al.  Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: aphididae). , 2003, Journal of insect physiology.

[25]  Che Jian Changes of protective enzymes and hydroxylamine in body of the whitebacked planthopper (WBPH), Sogatella furcifera Horvath, feeding on resistant rice varieties , 2002 .

[26]  X. Ni,et al.  Oxidative Responses of Resistant and Susceptible Cereal Leaves to Symptomatic and Nonsymptomatic Cereal Aphid (Hemiptera: Aphididae) Feeding , 2001, Journal of economic entomology.

[27]  J. Hemingway,et al.  Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens , 2000, Insect molecular biology.

[28]  X. Ni,et al.  Hydrolase and Oxido-Reductase Activities in Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae) , 2000 .

[29]  R. ffrench-Constant,et al.  Cyclodiene insecticide resistance: from molecular to population genetics. , 2000, Annual review of entomology.

[30]  A. Ciepiela,et al.  Effect of L‐3,4‐dihydroxyphenylalanine, ornithine and γγ‐aminobutyric acid on winter wheat resistance to grain aphid , 1999 .

[31]  D. Liska The detoxification enzyme systems. , 1998, Alternative medicine review : a journal of clinical therapeutic.

[32]  W. F. Tjallingii,et al.  Phenol oxidising enzymes in the grain aphid's saliva , 1998 .

[33]  K. Hori,et al.  Changes in Phenoloxidase Activities of the Galls on Leaves of Ulmus davidana Formed by Tetraneura fuslformis (Homoptera: Eriosomatidae) , 1997 .

[34]  M. Stout,et al.  Antinutritive and toxic components of plant defense against insects , 1996 .

[35]  M. Snyder,et al.  Glutathione S-transferases from larval Manduca sexta midgut: sequence of two cDNAs and enzyme induction. , 1995, Insect biochemistry and molecular biology.

[36]  R. Bennett,et al.  Secondary metabolites in plant defence mechanisms. , 1994, The New phytologist.

[37]  L. Corcuera Biochemical basis for the resistance of barley to aphids , 1993 .

[38]  S. Yu,et al.  Induction of detoxification enzymes in phytophagous insects: Role of insecticide synergists, larval age, and species , 1993 .

[39]  G. Mannaerts,et al.  Metabolic pathways in mammalian peroxisomes. , 1993, Biochimie.

[40]  H. Tsumuki,et al.  Additional Observations on Aphid Densities and Gramine Contents in Barley Lines , 1992 .

[41]  A. Urbańska,et al.  Biochemical adaptations of cereal aphids to host plants , 1992 .

[42]  Keywan Lee Glutathione S-transferase activities in phytophagous insects: Induction and inhibition by plant phototoxins and phenols , 1991 .

[43]  Z. Peng,et al.  Oxidases in the gut of an aphid Macrosiphum rosae (L.) and their relation to dietary phenolics. , 1991 .

[44]  A. Dixon,et al.  Resistance of cereals to aphids: Interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera: Aphididae) , 1990 .

[45]  H. Tsumuki,et al.  Relations of Gramine Contents and Aphid Populations on Barley Lines , 1990 .

[46]  T. Bakowski,et al.  Effect of secondary plant substances on winter wheat resistance to grain aphid , 1989 .

[47]  Z. Peng,et al.  Studies on the salivary physiology of plant bugs: Detoxification of phytochemicals by the salivary peroxidase of aphids , 1989 .

[48]  P. W. Miles,et al.  Acceptability of catechin and its oxidative condensation products to the rose aphid, Macrosiphum rosae , 1988 .

[49]  K. T. Luu,et al.  Peroxidative Responses of Leaves in Two Soybean Genotypes Injured by Twospotted Spider Mites (Acari: Tetranychidae) , 1986 .

[50]  G. Zúñiga,et al.  Effect of gramine in the resistance of barley seedlings to the aphid Rhopalosiphum padi , 1986 .

[51]  L. Brattsten,et al.  Enzymes involved in the metabolism of plant allelochemicals , 1986 .

[52]  L. Corcuera Effects of indole alkaloids from gramineae on aphids , 1984 .

[53]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[54]  R. Kieckhefer,et al.  Rearing Three Species of Cereal Aphids on Artificial Diets , 1967 .

[55]  J. L. Auclair,et al.  Feeding and Nutrition of the Pea Aphid, Acyrthosiphon pisum (Homoptera: Aphidae), on Chemically Defined Diets of Various pH and Nutrient Levels , 1965 .