Control of non-linear systems with time-dealy using state predictor based on synchronization

This paper proposes a controller design method for nonlinear systems with time-delay. The method consists of a state feedback and a state predictor based on synchronization of coupled systems. We consider the robust convergency of the prediction error under perturbation and model uncertainties. Then combining the state predictor with a static feedback, we proposed a predictor-basedcontrolofnonlinearsystemswith timedelay at the input. The effectiveness of the proposed method is illustrated by a numerical simulation example.

[1]  M. Mahmoud Robust Control and Filtering for Time-Delay Systems , 2000 .

[2]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[3]  Toshiki Oguchi,et al.  Input-output linearization of retarded non-linear systems by using an extension of Lie derivative , 2002 .

[4]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[5]  Atsushi Watanabe,et al.  Input-output linearization of nonlinear systems with time delays in state variables , 1998, Int. J. Syst. Sci..

[6]  O. J. M. Smith,et al.  A controller to overcome dead time , 1959 .

[7]  Henk Nijmeijer,et al.  Prediction of chaotic behavior , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[9]  A. S. Morse Ring Models for Delay-Differential Systems , 1974 .

[10]  Eduardo Sontag Linear Systems over Commutative Rings. A Survey , 1976 .

[11]  Kestutis Pyragas SYNCHRONIZATION OF COUPLED TIME-DELAY SYSTEMS : ANALYTICAL ESTIMATIONS , 1998 .

[12]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  D. D. Perlmutter,et al.  Stability of time‐delay systems , 1972 .

[14]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[15]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[16]  Martín Velasco-Villa,et al.  The disturbance decoupling problem for time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..

[17]  Atsushi Watanabe,et al.  Input Output Linearization of Multivariable Nonlinear Systems with Input Time Delays. Compensation of Time Delay Using Smith-like Predictor. , 1994 .

[18]  Henning U. Voss,et al.  Real-Time Anticipation of Chaotic States of an Electronic Circuit , 2002, Int. J. Bifurc. Chaos.

[19]  E. M. Shahverdiev,et al.  Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[20]  Hsiao-Ping Huang,et al.  Deadtime compensation for nonlinear processes with disturbances , 1992 .

[21]  El-Kebir Boukas,et al.  Deterministic and Stochastic Time-Delay Systems , 2002 .

[22]  Costas Kravaris,et al.  Deadtime compensation for nonlinear processes , 1989 .

[23]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[24]  Maciej Ogorzalek,et al.  Taming chaos. I. Synchronization , 1993 .

[25]  C. Masoller Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[26]  A. Olbrot,et al.  Finite spectrum assignment problem for systems with delays , 1979 .