Object Detection in Surveillance Using Deep Learning Methods: A Comparative Analysis

[1]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[2]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[3]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Theocharis Theocharides,et al.  SCoPE: Towards a Systolic Array for SVM Object Detection , 2009, IEEE Embedded Systems Letters.

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Luc Van Gool,et al.  Handling Occlusions with Franken-Classifiers , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[9]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Bo Li,et al.  Rear-View Vehicle Detection and Tracking by Combining Multiple Parts for Complex Urban Surveillance , 2014, IEEE Transactions on Intelligent Transportation Systems.

[11]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[12]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[14]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[15]  Shuo Yang,et al.  From Facial Parts Responses to Face Detection: A Deep Learning Approach , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[18]  Fatih Murat Porikli,et al.  Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework , 2015, IEEE Transactions on Intelligent Transportation Systems.

[19]  Evsen Yanmaz,et al.  Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint , 2016, IEEE Communications Surveys & Tutorials.

[20]  Hongping Cai,et al.  Detecting People in Artwork with CNNs , 2016, ECCV Workshops.

[21]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[23]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Vangelis Metsis,et al.  IoT Middleware: A Survey on Issues and Enabling Technologies , 2017, IEEE Internet of Things Journal.

[25]  Kazem Sohraby,et al.  IoT Considerations, Requirements, and Architectures for Smart Buildings—Energy Optimization and Next-Generation Building Management Systems , 2017, IEEE Internet of Things Journal.

[26]  Devendra Patil,et al.  Eye in the Sky: Real-Time Drone Surveillance System (DSS) for Violent Individuals Identification Using ScatterNet Hybrid Deep Learning Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[27]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[28]  Shifeng Zhang,et al.  Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd , 2018, ECCV.

[29]  Rachna Jain,et al.  Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images , 2019, Cognitive Systems Research.

[30]  Li Yao,et al.  Pedestrian detection framework based on magnetic regional regression , 2019, IET Image Process..