The Definition and Measurement of the Topological Entropy per Unit Volume in Parabolic PDE's
暂无分享,去创建一个
[1] J. Ginibre,et al. The Cauchy Problem in Local Spaces for the Complex Ginzburg—Landau Equation¶II. Contraction Methods , 1997 .
[2] P. Grassberger,et al. Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .
[3] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[4] L. Young. Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.
[5] Anatole Katok,et al. On local entropy , 1983 .
[6] Guido Schneider,et al. Attractors for modulation equations on unbounded domains-existence and comparison , 1995 .
[7] Pierre Collet,et al. The time dependent amplitude equation for the Swift-Hohenberg problem , 1990 .
[8] Extensive Properties of the Complex Ginzburg–Landau Equation , 1998, chao-dyn/9802006.
[9] Bernardo Cockburn,et al. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..
[10] P. Collet. Thermodynamic limit of the Ginzburg-Landau equations , 1993 .
[11] CNRSJ.-P. EckmannD,et al. The Time Dependent Amplitude Equation for the Swift-hohenberg Problem , 1990 .
[12] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[13] D. Ruelle,et al. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .