Institute of Physics Publishing Plasma Physics and Controlled Fusion Nonlinear Electromagnetic Gyrokinetic Simulations of Tokamak Plasmas

One of the central physics issues currently targeted by nonlinear gyrokinetic simulations is the role of finite-β effects. The latter change the MHD equilibrium, introduce new dynamical space and time scales, alter and enlarge the zoo of electrostatic microinstabilities and saturation mechanisms, and lead to turbulent transport along fluctuating magnetic field lines. It is shown that the electromagnetic effects on primarily electrostatic microinstabilities are generally weakly or moderately stabilizing. However, the saturation of these modes and hence the determination of the transport level in the quasi-stationary turbulent state can be dominated by nonlinear electromagnetic effects and yield surprising results. Despite this, the induced transport is generally electrostatic in nature well below the ideal ballooning limit.

[1]  F. Jenko,et al.  Numerical computation of collisionless drift Alfvén turbulence , 1999 .

[2]  Gregory W. Hammett,et al.  Field‐aligned coordinates for nonlinear simulations of tokamak turbulence , 1995 .

[3]  Rudolf Kippenhahn,et al.  Methods in Computational Physics , 1967 .

[4]  G. Hammett,et al.  Electromagnetic effects on plasma microturbulence and transport , 2001 .

[5]  R. Sudan,et al.  Considerations of ion‐temperature‐gradient‐driven turbulence , 1991 .

[6]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[7]  Alain J. Brizard,et al.  Nonlinear gyrokinetic theory for finite‐beta plasmas , 1988 .

[8]  Laurent Villard,et al.  Finite element approach to global gyrokinetic Particle-In-Cell simulations using magnetic coordinates , 1998 .

[9]  Frank Jenko,et al.  Massively parallel Vlasov simulation of electromagnetic drift-wave turbulence , 2000 .

[10]  R. Waltz Numerical simulation of electromagnetic turbulence in tokamaks , 1985 .

[11]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[12]  Vickie E. Lynch,et al.  Electron diamagnetic effects on the resistive pressure‐gradient‐driven turbulence and poloidal flow generation , 1991 .

[13]  Scott Self-sustained collisional drift-wave turbulence in a sheared magnetic field. , 1990, Physical review letters.

[14]  B. Scott Three-Dimensional Computation of Drift Alfven Turbulence , 1997 .

[15]  T. Antonsen,et al.  Kinetic equations for low frequency instabilities in inhomogeneous plasmas , 1980 .

[16]  Timothy J. Williams,et al.  Gyrokinetic simulations of E×B velocity‐shear effects on ion‐temperature‐gradient modes , 1993 .

[17]  Charlson C. Kim,et al.  Electromagnetic gyrokinetic-ion drift-fluid-electron hybrid simulation , 2000 .

[18]  Patrick H. Diamond,et al.  Theory of mean poloidal flow generation by turbulence , 1991 .

[19]  J. Krommes,et al.  Plasma transport in stochastic magnetic fields. Part 3. Kinetics of test particle diffusion , 1983, Journal of Plasma Physics.

[20]  W. Horton,et al.  Electromagnetic effect on the toroidal ion temperature gradient mode , 1993 .

[21]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[22]  Richard E. Denton,et al.  δf Algorithm , 1995 .

[23]  J. Dawson Particle simulation of plasmas , 1983 .

[24]  Tihiro Ohkawa,et al.  A transport model for alcator scaling in tokamaks , 1978 .

[25]  Y. Sarazin,et al.  Intermittent particle transport in two-dimensional edge turbulence , 1998 .

[26]  F. Jenko,et al.  Electron temperature gradient turbulence. , 2000, Physical review letters.

[27]  Patrick H. Diamond,et al.  Effects of Collisional Zonal Flow Damping on Turbulent Transport , 1999 .

[28]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[29]  William Dorland,et al.  Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .

[30]  Zhihong Lin,et al.  A fluid-kinetic hybrid electron model for electromagnetic simulations , 2001 .

[31]  Mike Kotschenreuther,et al.  Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .

[32]  Yang Chen,et al.  A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations , 2001 .

[33]  Xavier Garbet,et al.  Heat flux driven ion turbulence , 1998 .

[34]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[35]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[36]  W. W. Lee,et al.  The split-weight particle simulation scheme for plasmas , 1999 .

[37]  W. Lee,et al.  Partially linearized algorithms in gyrokinetic particle simulation , 1993 .

[38]  Alain J. Brizard,et al.  Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates , 1989, Journal of Plasma Physics.

[39]  A. Hasegawa,et al.  Self-organization processes in continuous media , 1985 .

[40]  Hasegawa,et al.  Self-organization of electrostatic turbulence in a cylindrical plasma. , 1987, Physical review letters.