Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair

[1]  Delbert E Day,et al.  Bioactive glass in tissue engineering. , 2011, Acta biomaterialia.

[2]  R. Saykally,et al.  pH-dependent x-ray absorption spectra of aqueous boron oxides. , 2011, The Journal of chemical physics.

[3]  Eduardo Saiz,et al.  Bioinspired Strong and Highly Porous Glass Scaffolds , 2011, Advanced functional materials.

[4]  Eui Kyun Park,et al.  Bioactive glass–poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks , 2011 .

[5]  Delbert E. Day,et al.  Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair , 2011, Journal of materials science. Materials in medicine.

[6]  Q. Fu,et al.  Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. , 2010, Journal of biomedical materials research. Part A.

[7]  B. Bal,et al.  In vivo evaluation of 13-93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model. , 2010, Journal of biomedical materials research. Part A.

[8]  Aldo R. Boccaccini,et al.  Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering , 2010, Materials.

[9]  Wenhai Huang,et al.  Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection , 2010, Journal of materials science. Materials in medicine.

[10]  Deping Wang,et al.  In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method , 2009 .

[11]  Delbert E Day,et al.  Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. , 2008, Acta biomaterialia.

[12]  K. Nguyen,et al.  A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[13]  J. Russias,et al.  Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. , 2007, Journal of biomedical materials research. Part A.

[14]  William E. Smith,et al.  Role of solvation forces in the gelation of fumed silica-alcohol suspensions. , 2006, Journal of colloid and interface science.

[15]  J. Cesarano,et al.  Direct Ink Writing of Three‐Dimensional Ceramic Structures , 2006 .

[16]  Z. Zhang,et al.  Aqueous gel-casting of hydroxyapatite , 2006 .

[17]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[18]  Sukalyan Dash,et al.  Adsorption of organic molecules on silica surface. , 2006, Advances in colloid and interface science.

[19]  Hod Lipson,et al.  Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries , 2022 .

[20]  J. Lewis,et al.  Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. , 2005, Biomaterials.

[21]  Shaoxian Song,et al.  Thickness of Solvation Layers on Nano‐scale Silica Dispersed in Water and Ethanol , 2005 .

[22]  R. R. Rao,et al.  Dispersion and Slip Casting of Hydroxyapatite , 2004 .

[23]  Margam Chandrasekaran,et al.  Rapid prototyping in tissue engineering: challenges and potential. , 2004, Trends in biotechnology.

[24]  D. Williams,et al.  Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films. , 2004, Biomaterials.

[25]  J. Lewis,et al.  Direct writing in three dimensions , 2004 .

[26]  Dilhan M. Kalyon,et al.  Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers , 2004 .

[27]  Raoul Kopelman,et al.  Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. , 2003, Journal of biomedical materials research. Part A.

[28]  Joseph Cesarano,et al.  Colloidal inks for directed assembly of 3-D periodic structures , 2002 .

[29]  J. Lewis,et al.  Direct-write assembly of ceramics from colloidal inks , 2002 .

[30]  R. Derosa,et al.  Poly(ethylene glycol) interactions with alumina and silica powders determined via DRIFT , 2002 .

[31]  I. Zein,et al.  Fused deposition modeling of novel scaffold architectures for tissue engineering applications. , 2002, Biomaterials.

[32]  S. Song,et al.  Dispersion of Silica Fines in Water-Ethanol Suspensions. , 2001, Journal of colloid and interface science.

[33]  Kapsabelis,et al.  Adsorption of Ethyl(hydroxyethyl)cellulose onto Silica Particles: The Role of Surface Chemistry and Temperature. , 2000, Journal of colloid and interface science.

[34]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[35]  R. Happonen,et al.  Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. , 1997, Journal of biomedical materials research.

[36]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[37]  T. Kitano,et al.  An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers , 1981 .

[38]  J. Rubio,et al.  The mechanism of adsorption of poly(ethylene oxide) flocculant on silica , 1976 .

[39]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[40]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[41]  Winslow H. Herschel,et al.  Konsistenzmessungen von Gummi-Benzollösungen , 1926 .

[42]  Q. Fu,et al.  Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. , 2011, Acta biomaterialia.

[43]  Yang Hao,et al.  Solvent-based paste extrusion solid freeforming , 2010 .

[44]  E. Saiz,et al.  Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. , 2010, Acta biomaterialia.

[45]  D. Day,et al.  In Vitro Bioactive Characteristics of Borate‐Based Glasses with Controllable Degradation Behavior , 2007 .

[46]  Delbert E. Day,et al.  Transformation of Borate Glasses into Biologically Useful Materials , 2003 .

[47]  L. Hench,et al.  Dose-dependent behavior of bioactive glass dissolution. , 2001, Journal of biomedical materials research.

[48]  J. Cesarano,et al.  ROBOCASTING PROVIDES MOLDLESS FABRICATION FROM SLURRY DEPOSITION , 1998 .