A Three-Dimensional Numerical Simulation of Splitting Severe Storms on 3 April 1964

Abstract A three-dimensional numerical storm model is used to investigate the observed splitting of several reflectivity echoes on 3 April 1964 in Oklahoma. Representative soundings from this day exhibit a nearly one-directional environmental wind shear vector and the presence of strong low-level wind shear. In the numerical simulation an initial cloud splits into two long-lived rotating storms, one that moves to the left of the mean winds and the other to the right. The left-moving storm develops more slowly than the right-moving one due to the deviation of the environmental wind hodograph from a straight line below 1 km. Further, the left mover eventually splits. Convergence induced by the cold, low-level storm outflow plays a major role in the development of both the first and second splits. However, the second split appears to be dynamically different than the first as the left-moving updraft remains essentially unchanged while a new updraft forms immediately adjacent to it. Because of the different p...