MT2DInvMatlab - A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion
暂无分享,去创建一个
Seong Kon Lee | Yoonho Song | Hee Joon Kim | Choon-Ki Lee | H. Kim | Yoonho Song | S. Lee | Choon‐Ki Lee
[1] G. Newman,et al. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .
[2] James Irving,et al. Numerical modeling of ground-penetrating radar in 2-D using MATLAB , 2006, Comput. Geosci..
[3] Douglas W. Oldenburg,et al. Calculation of sensitivities for the frequency-domain electromagnetic problem , 1994 .
[4] S. Constable,et al. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .
[5] P. Wannamaker. 22. Affordable Magnetotellurics: Interpretation in Natural Environments , 1999 .
[6] Brian R. Spies,et al. Three-Dimensional Electromagnetics , 1999 .
[7] William H. Press,et al. Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .
[8] M. Zhdanov,et al. Two-dimensional magnetotelluric inversion of blocky geoelectrical structures , 2002 .
[9] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[10] Vladimir I. Dmitriev,et al. Magnetotellurics in the Context of the Theory of Ill-Posed Problems , 2002 .
[11] T. Uchida,et al. Smooth 2-D inversion for magnetotelluric data based on statistical criterion ABIC , 1993 .
[12] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[13] Gary D. Egbert,et al. An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .
[14] M. Chouteau,et al. Two‐dimensional terrain correction in magnetotelluric surveys , 1988 .
[15] Yasuo Ogawa,et al. On Two-Dimensional Modeling Of Magnetotelluric Field Data , 2002 .
[16] David L.B. Jupp,et al. Two-dimensional magnetotelluric inversion , 1977 .
[17] N. Sundararajan,et al. VLFPROS - A Matlab code for processing of VLF-EM data , 2006, Comput. Geosci..
[18] M. Loke. Topographic Modelling in Electrical Imaging Inversion , 2000 .
[19] François Baumgartner,et al. CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electromagnetic surveys , 2006, Comput. Geosci..
[20] William Rodi,et al. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .
[21] Jung-Ho Kim,et al. Enhancing the resolving power of least‐squares inversion with active constraint balancing , 2003 .
[22] Yongwimon Lenbury,et al. Three-dimensional magnetotelluric inversion : data-space method , 2005 .
[23] A. Vandenberg. The Tasman Fold Belt System in Victoria , 1978 .
[24] Erwan Gloaguen,et al. bh_tomo - a Matlab borehole georadar 2D tomography package , 2007, Comput. Geosci..
[25] D. Oldenburg,et al. METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .
[26] Philip E. Wannamaker,et al. Two-dimensional topographic responses in magnetotellurics modeled using finite elements , 1986 .
[27] R. Mackie,et al. Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .
[28] Michael S. Zhdanov,et al. Electromagnetic inversion using quasi-linear approximation , 2000 .
[29] Yutaka Sasaki,et al. Three-dimensional inversion of static-shifted magnetotelluric data , 2004 .
[30] Myung Jin Nam,et al. 3D magnetotelluric modelling including surface topography , 2007 .
[31] H. T. Holcombe,et al. Three-dimensional terrain corrections in resistivity surveys , 1984 .
[32] Yasuo Ogawa,et al. A two-dimensional magnetotelluric inversion assuming Gaussian static shift , 1995 .
[33] W. Rodi. A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .
[34] R.. Near-surface and Topographic Distortions in Electromagnetic Induction , 2005 .
[35] Yutaka Sasaki,et al. Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data , 1989 .