Dynamic risk measures: Time consistency and risk measures from BMO martingales

Abstract Time consistency is a crucial property for dynamic risk measures. Making use of the dual representation for conditional risk measures, we characterize the time consistency by a cocycle condition for the minimal penalty function. Taking advantage of this cocycle condition, we introduce a new methodology for the construction of time-consistent dynamic risk measures. Starting with BMO martingales, we provide new classes of time-consistent dynamic risk measures. These families generalize those obtained from backward stochastic differential equations. Quite importantly, starting with right-continuous BMO martingales, this construction naturally leads to paths with jumps.

[1]  P. A. Meyer Les espaces H1 et BMO , 1976 .

[2]  Emanuela Rosazza Gianin,et al.  Risk measures via g-expectations , 2006 .

[3]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[4]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[5]  S. Peng,et al.  Filtration-consistent nonlinear expectations and related g-expectations , 2002 .

[6]  Walter Schachermayer,et al.  Stochastic Methods in Finance , 2004 .

[7]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[8]  Patrick Cheridito,et al.  Time-Consistency of Indifference Prices and Monetary Utility Functions , 2006 .

[9]  N. El Karoui,et al.  Pricing, Hedging and Optimally Designing Derivatives via Minimization of Risk Measures , 2007, 0708.0948.

[10]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[11]  G. P. Szegö,et al.  Risk measures for the 21st century , 2004 .

[12]  H. Föllmer,et al.  Convex risk measures and the dynamics of their penalty functions , 2006 .

[13]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[14]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[15]  P. A. Meyer,et al.  Un Cours sur les Intégrales Stochastiques , 2002 .

[16]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[17]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[18]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[19]  P. Protter Stochastic integration and differential equations , 1990 .

[20]  J. Bion-Nadal Time consistent dynamic risk processes , 2009 .

[21]  D. Lépingle,et al.  Sur l'intégrabilité uniforme des martingales exponentielles , 1978 .

[22]  N. Kazamaki Continuous Exponential Martingales and Bmo , 1994 .

[23]  C. Doléans-Dade,et al.  Inegalites de normes avec poids , 1979 .

[24]  Marco Frittelli,et al.  Dynamic convex risk measures , 2004 .

[25]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[26]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[27]  Paul-André Meyer,et al.  Une caracterisation de BMO , 1977 .

[28]  Susanne Klöppel,et al.  DYNAMIC INDIFFERENCE VALUATION VIA CONVEX RISK MEASURES , 2007 .

[29]  S. Peng Nonlinear Expectations, Nonlinear Evaluations and Risk Measures , 2004 .

[30]  N. Karoui,et al.  Backward Stochastic Differential Equations , 1997 .

[31]  Leonard Rogers,et al.  VALUATIONS AND DYNAMIC CONVEX RISK MEASURES , 2007, 0709.0232.

[32]  Jocelyne Bion-Nadal Time Consistent Dynamic Risk Processes, Cadlag Modification , 2006 .

[33]  Martin Schweizer Dynamic utility indierence valuation via convex risk measures , 2005 .

[34]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .