Zero Delay Joint Source Channel Coding for Multivariate Gaussian Sources over Orthogonal Gaussian Channels

Abstract: Communication of a multivariate Gaussian source transmitted over orthogonaladditive white Gaussian noise channels using delay-free joint source channel codes (JSCC)is studied in this paper. Two scenarios are considered: (1) all components of the multivariateGaussian are transmitted by one encoder as a vector or several ideally collaborating nodesin a network; (2) the multivariate Gaussian is transmitted through distributed nodes in asensor network. In both scenarios, the goal is to recover all components of the multivariateGaussian at the receiver. The paper investigates a subset of JSCC consisting of directsource-to-channelmappingsthatoperateonasymbol-by-symbolbasistoensurezerocodingdelay. A theoretical analysis that helps explain and quantify distortion behavior for suchJSCC is given. Relevant performance bounds for the network are also derived withno constraints on complexity and delay. Optimal linear schemes for both scenarios arepresented. Results for Scenario 1 show that linear mappings perform well, except whencorrelation is high. In Scenario 2, linear mappings provide no gain from correlation whenthe channel signal-to-noise ratio (SNR) gets large. The gap to the performance upper boundis large for both scenarios, regardless of SNR, when the correlation is high. The maincontribution of this paper is the investigation of nonlinear mappings for both scenarios. Itis shown that nonlinear mappings can provide substantial gain compared to optimal linearschemes when correlation is high. Contrary to linear mappings for Scenario 2, carefully

[1]  Thomas J. Goblick,et al.  Theoretical limitations on the transmission of data from analog sources , 1965, IEEE Trans. Inf. Theory.

[2]  C. Gasquet,et al.  Fourier analysis and applications , 1998 .

[3]  Tor A. Ramstad,et al.  Bandwidth compression for continuous amplitude channels based on vector approximation to a continuous subset of the source signal space , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  Mikael Skoglund,et al.  Nonlinear coding and estimation for correlated data in wireless sensor networks , 2009, IEEE Transactions on Communications.

[5]  R. Rajesh,et al.  Correlated Gaussian sources over orthogonal Gaussian channels , 2008, 2008 International Symposium on Information Theory and Its Applications.

[6]  Michael Gastpar,et al.  To code, or not to code: lossy source-channel communication revisited , 2003, IEEE Trans. Inf. Theory.

[7]  P.A. Floor,et al.  Dimension Reducing Mappings in Joint Source-Channel Coding , 2006, Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006.

[8]  D. Varberg,et al.  Calculus with Analytic Geometry , 1968 .

[9]  Mikael Skoglund,et al.  Lattice-Based Source-Channel Coding in Wireless Sensor Networks , 2011, 2011 IEEE International Conference on Communications (ICC).

[10]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[11]  T.A. Ramstad,et al.  Quantizer optimization in hybrid digital-analog transmission of analog source signals , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[12]  Amos Lapidoth,et al.  Sending a bivariate Gaussian over a Gaussian MAC , 2010, IEEE Trans. Inf. Theory.

[13]  Mikael Skoglund,et al.  Distributed quantization over noisy channels , 2009, IEEE Transactions on Communications.

[14]  Muriel Medard,et al.  On Separation for Multiple Access Channels , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[15]  Pramod Viswanath,et al.  Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem , 2005, IEEE Transactions on Information Theory.

[16]  Kenneth Rose,et al.  Optimized Analog Mappings for Distributed Source-Channel Coding , 2010, 2010 Data Compression Conference.

[17]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[18]  Uzi Timor Design of signals for analog communication , 1970, IEEE Trans. Inf. Theory.

[19]  Tor A. Ramstad,et al.  Shannon-Kotel’nikov Mappings for Analog Point-to-Point Communications , 2009, IEEE Transactions on Information Theory.

[20]  X. Cai,et al.  Bandwidth Expansion Shannon Mapping for Analog Error-Control Coding , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[21]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[22]  Mikael Skoglund,et al.  Hybrid Digital–Analog Source–Channel Coding for Bandwidth Compression/Expansion , 2006, IEEE Transactions on Information Theory.

[23]  George L. Turin,et al.  The theory of optimum noise immunity , 1959 .

[24]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[25]  Tor A. Ramstad,et al.  Shannon-kotel-nikov mappings in joint source-channel coding , 2009, IEEE Transactions on Communications.

[26]  Nam C. Phamdo,et al.  Hybrid digital-analog (HDA) joint source-channel codes for broadcasting and robust communications , 2002, IEEE Trans. Inf. Theory.

[27]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[28]  Yasutada Oohama,et al.  Distributed Source Coding for Correlated Memoryless Gaussian Sources , 2009, ArXiv.

[29]  Yasutada Oohama Gaussian multiterminal source coding , 1997, IEEE Trans. Inf. Theory.

[30]  Kyong-Hwa Lee,et al.  Optimal Linear Coding for Vector Channels , 1976, IEEE Trans. Commun..

[31]  Fady Alajaji,et al.  Hybrid digital-analog source-channel coding with one-to-three bandwidth expansion , 2011, 2011 12th Canadian Workshop on Information Theory.

[32]  Neri Merhav,et al.  Threshold Effects in Parameter Estimation as Phase Transitions in Statistical Mechanics , 2010, IEEE Transactions on Information Theory.

[33]  Ilangko Balasingham,et al.  Delay-Free Joint Source-Channel Coding for Gaussian Network of Multiple Sensors , 2011, 2011 IEEE International Conference on Communications (ICC).

[34]  Kenneth Rose,et al.  Optimal mappings for joint source channel coding , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[35]  Vinay A. Vaishampayan Combined Source-Channel Coding for Bandlimited Waveform Channels , 1989 .

[36]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[37]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[38]  Yichuan Hu,et al.  Analog Joint Source-Channel Coding Using Non-Linear Curves and MMSE Decoding , 2011, IEEE Transactions on Communications.

[39]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[40]  G. Welti,et al.  Hybrid Amplitude-and-Phase Modulation for Analog Data Transmission , 1975, IEEE Trans. Commun..

[41]  Baltasar Beferull-Lozano,et al.  Multiple Description Analog Joint Source-Channel Coding to Exploit the Diversity in Parallel Channels , 2012, IEEE Transactions on Signal Processing.

[42]  P.A. Floor,et al.  Optimality of Dimension Expanding Shannon-Kotel'nikov Mappings , 2007, 2007 IEEE Information Theory Workshop.

[43]  Mikael Skoglund,et al.  Zero-Delay Joint Source-Channel Coding for a Bivariate Gaussian on a Gaussian MAC , 2012, IEEE Transactions on Communications.

[44]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[45]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[46]  Michael Gastpar,et al.  The distributed Karhunen-Loeve transform , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[47]  D. McRae Performance Evaluation of a New Modulation Technique , 1971 .

[48]  Yuval Kochman,et al.  Analog Matching of Colored Sources to Colored Channels , 2006, IEEE Transactions on Information Theory.