A novel algorithm for rate independent small strain crystal plasticity based on the infeasible primal-dual interior point method

Abstract Single crystal plasticity plays a major role in the analysis of material anisotropy and texture evolution, treats each crystalline grain individually. The polycrystalline material response is obtained upon considering a structure consisting of various individual grains, often also considering interface effects at the grain boundaries. On the individual grain level, single crystal plasticity can be treated in the mathematical framework of multi-surface plasticity, leading to a constrained optimization problem wherein multiple constraints are defined as yield criteria on the different slip systems. In this work, we present a new algorithm for the solution of the constrained optimization problem based on the Infeasible Primal Dual Interior Point method (IPDIPM). The main motivation herein is the handling of the ill-posed problem without the use of simple perturbation technique, see e.g. Miehe and Schroder [2001]. The proposed algorithm, involving slack variables, is developed for the framework of small strain single crystal plasticity. The use of slack variables therein stabilizes the conventional method and allows for a temporary violation of the constraint condition during the optimization. Moreover, all slip systems are considered simultaneously, omitting an iterative active set search. Several numerical examples are simulated to show the performance of the developed algorithm.

[1]  H. Stumpf,et al.  A MODEL OF ELASTOPLASTIC BODIES WITH CONTINUOUSLY DISTRIBUTED DISLOCATIONS , 1996 .

[2]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[3]  R. Borja,et al.  Computational Aspects of Elasto-Plastic Deformation in Polycrystalline Solids , 2012 .

[4]  J. Mandel,et al.  Plasticité classique et viscoplasticité , 1972 .

[5]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[6]  K. Anstreicher,et al.  On the convergence of an infeasible primal-dual interior-point method for convex programming , 1994 .

[7]  Georges Cailletaud,et al.  On the selection of active slip systems in crystal plasticity , 2005 .

[8]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[9]  Giulio Maier,et al.  Quadratic programming and theory of elastic-perfectly plastic structures , 1968 .

[10]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[11]  P. Wriggers,et al.  An interior‐point algorithm for elastoplasticity , 2007 .

[12]  Giulio Maier,et al.  Incremental elastoplastic analysis and quadratic optimization , 1970 .

[13]  W. Gambin Refined analysis of elastic-plastic crystals , 1992 .

[14]  Christian Miehe,et al.  A comparative study of stress update algorithms for rate‐independent and rate‐dependent crystal plasticity , 2001 .

[15]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[16]  Christian Miehe,et al.  Aspects of computational rate-independent crystal plasticity , 1997 .

[17]  Martin Schmidt-Baldassari,et al.  Numerical concepts for rate-independent single crystal plasticity , 2003 .

[18]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[19]  S. Stupkiewicz,et al.  Size effects in wedge indentation predicted by a gradient-enhanced crystal-plasticity model , 2018, International Journal of Plasticity.

[20]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[21]  R. Asaro,et al.  An experimental study of shear localization in aluminum-copper single crystals , 1981 .

[22]  M. Arminjon A Regular Form of the Schmid Law. Application to the Ambiguity Problem , 1991 .

[23]  B. Holmedal,et al.  Review of the Taylor ambiguity and the relationship between rate-independent and rate-dependent full-constraints Taylor models , 2014 .

[24]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[25]  J. Langer,et al.  Thermodynamic theory of dislocation-mediated plasticity , 2009, 0908.3913.

[26]  Kristian Krabbenhoft,et al.  A variational principle of elastoplasticity and its application to the modeling of frictional materials , 2009 .

[27]  Knud D. Andersen,et al.  Limit Analysis with the Dual Affine Scaling Algorithm , 1995 .

[28]  Thermodynamic dislocation theory of adiabatic shear banding in steel , 2017, 1710.05566.

[29]  Dierk Raabe,et al.  Crystal Plasticity Finite Element Methods: in Materials Science and Engineering , 2010 .

[30]  C. Miehe,et al.  Fast texture updates in fcc polycrystal plasticity based on a linear active-set-estimate of the lattice spin , 2007 .

[31]  U. F. Kocks The relation between polycrystal deformation and single-crystal deformation , 1970 .

[32]  Daniel Balzani,et al.  Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices , 2015 .

[33]  J. Langer,et al.  Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel. , 2017, Physical review. E.

[34]  W. Polkowski Crystal Plasticity , 2021, Crystals.

[35]  K. Le Thermodynamic dislocation theory for non-uniform plastic deformations , 2017, 1705.08794.

[36]  Margaret H. Wright,et al.  Why a Pure Primal Newton Barrier Step May be Infeasible , 1995, SIAM J. Optim..

[37]  Etienne Loute,et al.  Solving limit analysis problems: an interior‐point method , 2005 .

[38]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[39]  Martin Diehl,et al.  Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials , 2013 .

[40]  K. Le,et al.  Nonlinear continuum dislocation theory revisited , 2014 .

[41]  Paul Steinmann,et al.  On the numerical treatment and analysis of finite deformation ductile single crystal plasticity , 1996 .

[42]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  G. Maier A quadratic programming approach for certain classes of non linear structural problems , 1968 .

[44]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[45]  R. Borja,et al.  Discrete micromechanics of elastoplastic crystals , 1993 .

[46]  Paul R. Dawson,et al.  On modeling the development of crystallographic texture in bulk forming processes , 1989 .

[47]  Q. H. Zuo,et al.  On the uniqueness of a rate-independent plasticity model for single crystals , 2011 .

[48]  D. McDowell,et al.  A semi-implicit integration scheme for rate independent finite crystal plasticity , 2006 .

[49]  Christian Miehe,et al.  Exponential Map Algorithm for Stress Updates in Anisotropic Multiplicative Elastoplasticity for Single Crystals , 1996 .

[50]  J. C. Simo,et al.  Non‐smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms , 1988 .

[51]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[52]  James R. Rice,et al.  Strain localization in ductile single crystals , 1977 .

[53]  Pascal Francescato,et al.  Interior point optimization and limit analysis: an application , 2003 .

[54]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..