Inhibition of MHC class I antigen presentation by viral proteins

[1]  P. A. Peterson,et al.  Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Andrews,et al.  Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. , 1996, The EMBO journal.

[3]  P. A. Peterson,et al.  Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. , 1996, The EMBO journal.

[4]  S. Leng,et al.  Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. , 1996, Journal of immunology.

[5]  F. Deryckère,et al.  Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgroups B and C , 1996, Journal of virology.

[6]  P. Cresswell,et al.  The protease inhibitor, N-acetyl-L-leucyl-L-leucyl-leucyl-L- norleucinal, decreases the pool of major histocompatibility complex class I-binding peptides and inhibits peptide trimming in the endoplasmic reticulum , 1996, The Journal of experimental medicine.

[7]  R. Tripp,et al.  The role of human adenovirus early region 3 proteins (gp19K, 10.4K, 14.5K, and 14.7K) in a murine pneumonia model , 1996, Journal of virology.

[8]  M Nijenhuis,et al.  Identification of a contact region for peptide on the TAP1 chain of the transporter associated with antigen processing. , 1996, Journal of immunology.

[9]  E. Gilboa,et al.  Cells treated with TAP-2 antisense oligonucleotides are potent antigen-presenting cells in vitro and in vivo. , 1996, Journal of immunology.

[10]  F. Momburg,et al.  Residues in TAP2 peptide transporters controlling substrate specificity. , 1996, Journal of immunology.

[11]  P. Kloetzel,et al.  LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12 , 1996, The Journal of experimental medicine.

[12]  L. Lanier,et al.  Inhibitory MHC class I receptors on NK cells and T cells. , 1996, Immunology today.

[13]  P. Cresswell,et al.  Processing and delivery of peptides presented by MHC class I molecules. , 1996, Current opinion in immunology.

[14]  U. Koszinowski,et al.  Cytokines restore MHC class I complex formation and control antigen presentation in human cytomegalovirus-infected cells. , 1995, The Journal of general virology.

[15]  William Arbuthnot Sir Lane,et al.  The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. , 1995, Immunity.

[16]  A. G. Grandea,et al.  Dependence of Peptide Binding by MHC Class I Molecules on Their Interaction with TAP , 1995, Science.

[17]  G. Geginat,et al.  Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport , 1995, Journal of virology.

[18]  P. Beer-Romero,et al.  Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. , 1995, Science.

[19]  L. Sun,et al.  Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains , 1995, Journal of virology.

[20]  H. Jennissen,et al.  Ubiquitin and the enigma of intracellular protein degradation. , 1995, European journal of biochemistry.

[21]  R. Welsh,et al.  Major histocompatibility complex class I antigens and the control of viral infections by natural killer cells , 1995, Journal of virology.

[22]  Stefan Imreh,et al.  Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1 , 1995, Nature.

[23]  P. A. Peterson,et al.  A viral inhibitor of peptide transporters for antigen presentation , 1995, Nature.

[24]  J. Yewdell,et al.  Herpes simplex virus turns off the TAP to evade host immunity , 1995, Nature.

[25]  M. Hochstrasser,et al.  Biogenesis, structure and function of the yeast 20S proteasome. , 1995, The EMBO journal.

[26]  R F Standaert,et al.  Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin , 1995, Science.

[27]  W Baumeister,et al.  Proteasome from Thermoplasma acidophilum: a threonine protease. , 1995, Science.

[28]  R. Huber,et al.  Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. , 1995, Science.

[29]  P. A. Peterson,et al.  Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Mizushima,et al.  Ordered structure of the crystallized bovine 20S proteasome. , 1995, Journal of Biochemistry (Tokyo).

[31]  E. Adams,et al.  The Origins of HLA‐A,B,C Polymorphism , 1995, Immunological reviews.

[32]  J. Yewdell,et al.  Presentation of endogenous and exogenous antigens is not affected by inactivation of E1 ubiquitin-activating enzyme in temperature-sensitive cell lines. , 1995, Journal of Immunology.

[33]  S. Emr,et al.  Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum , 1994, Cell.

[34]  P. van Endert,et al.  Characteristics of peptide and major histocompatibility complex class I/beta 2-microglobulin binding to the transporters associated with antigen processing (TAP1 and TAP2). , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Saga,et al.  Rapid degradation of the heavy chain of class I major histocompatibility complex antigens in the endoplasmic reticulum of human cytomegalovirus-infected cells , 1994, Journal of virology.

[36]  Tom Maniatis,et al.  The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB , 1994, Cell.

[37]  J. Trowsdale,et al.  Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins , 1994, Current Biology.

[38]  R. Koup Virus escape from CTL recognition , 1994, The Journal of experimental medicine.

[39]  R. Tampé,et al.  A sequential model for peptide binding and transport by the transporters associated with antigen processing. , 1994, Immunity.

[40]  K. Rajewsky,et al.  MHC class I expression in mice lacking the proteasome subunit LMP-7. , 1994, Science.

[41]  P. A. Peterson,et al.  Nucleotide binding of the C‐terminal domains of the major histocompatibility complex‐encoded transporter expressed in Drosophila melanogaster cells , 1994, FEBS letters.

[42]  H. Ertl,et al.  MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. , 1994, Immunity.

[43]  J. Coligan,et al.  Downregulation of peptide transporter genes in cell lines transformed with the highly oncogenic adenovirus 12 , 1994, The Journal of experimental medicine.

[44]  J. Salamero,et al.  Homozygous human TAP peptide transporter mutation in HLA class I deficiency. , 1994, Science.

[45]  P. A. Peterson,et al.  Displacement of housekeeping proteasome subunits by MHC‐encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. , 1994, The EMBO journal.

[46]  P. A. Peterson,et al.  Interaction of MHC class I molecules with the transporter associated with antigen processing. , 1994, Science.

[47]  D. Andrews,et al.  A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes , 1994, Cell.

[48]  R. Tampé,et al.  Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP). , 1994, The Journal of biological chemistry.

[49]  J. Neefjes,et al.  Peptide size selection by the major histocompatibility complex-encoded peptide transporter , 1994, The Journal of experimental medicine.

[50]  P. Lehner,et al.  Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes , 1994, Journal of virology.

[51]  P. Cresswell,et al.  MHC class l/β2-microglobulin complexes associate with TAP transporters before peptide binding , 1994, Nature.

[52]  M. Takashina,et al.  Replacement of proteasome subunits X and Y by LMP7 and LMP2 induced by interferon‐γ for acquirement of the functional diversity responsible for antigen processing , 1994, FEBS letters.

[53]  P. Cresswell,et al.  Association of human class I MHC alleles with the adenovirus E3/19K protein. , 1994, Journal of immunology.

[54]  A. McMichael,et al.  HLA class I molecules are not transported to the cell surface in cells infected with herpes simplex virus types 1 and 2. , 1994, Journal of immunology.

[55]  Q. Deveraux,et al.  A 26 S protease subunit that binds ubiquitin conjugates. , 1994, The Journal of biological chemistry.

[56]  S. Tonegawa,et al.  Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator , 1994, The Journal of experimental medicine.

[57]  S. Jonjić,et al.  Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape , 1994, Journal of virology.

[58]  T. Schumacher,et al.  Peptide translocation by variants of the transporter associated with antigen processing. , 1993, Science.

[59]  C. Rosen,et al.  Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit , 1993, Nature.

[60]  H. Ploegh,et al.  Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. , 1993, Journal of immunology.

[61]  P. Cresswell,et al.  Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Tripp,et al.  Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes , 1993, Journal of virology.

[63]  S. Tonegawa,et al.  TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective , 1993, Cell.

[64]  J. Neefjes,et al.  Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. , 1993, Science.

[65]  D. Feuerbach,et al.  Novel proteins associated with MHC class I antigens in cells expressing the adenovirus protein E3/19K. , 1993, The EMBO journal.

[66]  A. Goldberg,et al.  A role for the ubiquitin-dependent proteolytic pathway in MHC class l-restricted antigen presentation , 1993, Nature.

[67]  K. Kärre Natural killer cells and the MHC class I pathway of peptide presentation. , 1993, Seminars in immunology.

[68]  M. Rechsteiner,et al.  The multicatalytic and 26 S proteases. , 1993, The Journal of biological chemistry.

[69]  G. Gerna,et al.  HLA-unrestricted killing of HSV-1-infected mononuclear cells. Involvement of either gamma/delta+ or alpha/beta+ human cytotoxic T lymphocytes. , 1993, Journal of immunology.

[70]  J. Trowsdale,et al.  The transporters associated with antigen presentation. , 1993, Seminars in cell biology.

[71]  S. Tonegawa,et al.  TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4−8+ T cells , 1992, Cell.

[72]  H. Browne,et al.  Construction and characterization of a human cytomegalovirus mutant with the UL18 (class I homolog) gene deleted , 1992, Journal of virology.

[73]  U. Koszinowski,et al.  Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment , 1992, The Journal of experimental medicine.

[74]  S. Riddell,et al.  Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. , 1992, Science.

[75]  N. Huskisson,et al.  Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule , 1992, Nature.

[76]  T. Elliott,et al.  Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex , 1992, Nature.

[77]  A. Townsend,et al.  Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter , 1991, Nature.

[78]  T. Schumacher,et al.  Peptide loading of empty major histocompatibility complex molecules on RMA‐S cells allows the induction of primary cytotoxic T lymphocyte responses , 1991, European journal of immunology.

[79]  J. Yewdell,et al.  Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation , 1991, The Journal of experimental medicine.

[80]  B. Rouse,et al.  The mouse model and understanding immunity to herpes simplex virus. , 1991, Reviews of infectious diseases.

[81]  F. Lévy,et al.  ATP is required for in vitro assembly of MHC class I antigens but not to transfer of peptides acrosss the ER membrane , 1991, Cell.

[82]  Robert DeMars,et al.  Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter , 1991, Nature.

[83]  R. Demars,et al.  A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway , 1990, Nature.

[84]  S. Beck,et al.  A complex between the MHC class I homologue encoded by human cytomegalovirus and β2 microglobulin , 1990, Nature.

[85]  M. Jackson,et al.  Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. , 1990, The EMBO journal.

[86]  A. Goldberg,et al.  The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. , 1990, The Journal of biological chemistry.

[87]  H. Ljunggren,et al.  Association of class I major histocompatibility heavy and light chains induced by viral peptides , 1989, Nature.

[88]  R. Chanock,et al.  Role of early region 3 (E3) in pathogenesis of adenovirus disease. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[90]  U. Koszinowski,et al.  CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity , 1987, Journal of virology.

[91]  H. Burgert,et al.  The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. , 1987, The EMBO journal.

[92]  P. A. Peterson,et al.  Structural and functional dissection of an MHC class I antigen‐binding adenovirus glycoprotein. , 1986, The EMBO journal.

[93]  R. Anderson,et al.  Effect of herpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility complex antigens on infected cells , 1985, Journal of virology.

[94]  P. A. Peterson,et al.  Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance , 1985, Cell.

[95]  H. Burgert,et al.  An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens , 1985, Cell.

[96]  M. Jackson,et al.  Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. , 1996, Annual review of cell and developmental biology.

[97]  M. Spriggs,et al.  One step ahead of the game: viral immunomodulatory molecules. , 1996, Annual review of immunology.

[98]  M. Horwitz,et al.  Model systems for studying the effects of adenovirus E3 genes on virulence in vivo. , 1995, Current topics in microbiology and immunology.

[99]  J. Monaco,et al.  The genetics of proteasomes and antigen processing. , 1995, Annual review of genetics.

[100]  M. Jackson,et al.  Assembly and intracellular transport of MHC class I and class II molecules. , 1995, Cold Spring Harbor Symposia on Quantitative Biology.

[101]  G. McFadden,et al.  How DNA viruses perturb functional MHC expression to alter immune recognition. , 1994, Advances in cancer research.

[102]  H. Rammensee,et al.  Peptides naturally presented by MHC class I molecules. , 1993, Annual review of immunology.

[103]  M. Jackson,et al.  Assembly and intracellular transport of MHC class I molecules. , 1993, Annual review of cell biology.

[104]  P. A. Peterson,et al.  Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus protein ICP 47 , 2022 .