Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces

We introduce a quantitative version of Property A in order to estimate the Lp-compressions of a metric measure space X. We obtain various estimates for spaces with sub-exponential volume growth. This quantitative property A also appears to be useful to yield upper bounds on the Lp-distortion of finite metric spaces. Namely, we obtain new optimal results for finite subsets of homogeneous Riemannian manifolds. We also introduce a general form of Poincaré inequalities that provide constraints on compressions, and lower bounds on distortion. These inequalities are used to prove the optimality of some of our results.

[1]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[2]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[3]  Guoliang Yu,et al.  The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space , 2000 .

[4]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[5]  T. Laakso Plane with A∞‐Weighted Metric not Bilipschitz Embeddable to Rn , 2002 .

[6]  Y. Cho,et al.  Discrete Groups , 1994 .

[7]  Yuval Peres,et al.  Trees and Markov Convexity , 2006, SODA '06.

[8]  J. Tu Remarks on YU's 'property a' for discrete metric spaces and groups , 2001 .

[9]  Vincent Lafforgue,et al.  Un renforcement de la propriété (T) , 2008 .

[11]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[12]  Warped cones and property A , 2005, math/0501349.

[13]  Exactness and Uniform Embeddability of Discrete Groups , 2003, math/0309166.

[14]  Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces , 2006, math/0603138.

[15]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[16]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[17]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[18]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .

[19]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[20]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.