Learning symmetry groups with hidden units: beyond the perceptron

[1]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[2]  S Dehaene,et al.  Spin glass model of learning by selection. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[4]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[5]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[6]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[7]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[8]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Geoffrey E. Hinton,et al.  Parallel visual computation , 1983, Nature.

[11]  Geoffrey E. Hinton,et al.  Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines , 1983, AAAI.

[12]  Paul Smolensky,et al.  Schema Selection and Stochastic Inference in Modular Environments , 1983, AAAI.

[13]  Francis Crick,et al.  The function of dream sleep , 1983, Nature.

[14]  J. J. Hopfield,et al.  ‘Unlearning’ has a stabilizing effect in collective memories , 1983, Nature.

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  Lalit R. Bahl,et al.  A Maximum Likelihood Approach to Continuous Speech Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[18]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[20]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[21]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[22]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[23]  I. Z. Fisher MONTE CARLO METHOD IN STATISTICAL PHYSICS , 1959 .

[24]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.