OBJECTIVE
The interactions between integrins and extracellular matrix proteins are known to modulate cell behavior, and may be involved in regulating cartilage formation and repair. The purpose of this study was to determine the patterns and localization of expression of the beta1 integrins during cartilage formation by periosteum, which is used to repair articular cartilage.
DESIGN
Periosteal explants from 2-month-old rabbit medial proximal tibiae were cultured in agarose suspension for 0 to 6 weeks, with 10 ng/ml transforming growth factor-beta1 added for the first 2 days of culture. Integrin expressions were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and localized by immunohistochemistry.
RESULTS
Normal periosteum expressed the alpha1, alpha3, alpha5, beta1 subunits at low levels, and the proteins for all but the alpha3 subunits were identified by immunohistochemistry in the periosteum. Significant two- to five-fold up-regulation of the mRNA expression of the alpha1, alpha3, alpha5 and beta1 integrin subunits during the early proliferative stage of chondrogenesis was observed. The initial change was a five-fold increase in alpha5 expression on day 2 and a two-fold increase in alpha3 expression. On day 5, alpha1 expression was up-regulated (four-fold). beta1 expression was broadly up-regulated (three to four-fold) from day 5 to 14. In the early stage of chondrocyte differentiation, after day 14, alpha1 expression was down-regulated, while there was upregulation of alpha3 (three-fold), alpha5 (three-fold) and beta1 (four-fold) expressions. Thereafter, alpha1 expression was down-regulated, while alpha3, alpha5 and beta1 expressions were up-regulated again during matrix synthesis. Immunohistochemistry confirmed this late decrease in alpha1 levels and increase in alpha3, alpha5 and beta1 levels in chondrocytes.
CONCLUSIONS
These observations indicate that the beta1 integrins play an important role in the process of chondrogenesis in periosteum.