Multigrid methods for discrete elliptic problems on triangular surfaces

We construct and analyze multigrid methods for discretized self-adjoint elliptic problems on triangular surfaces in $${\mathbb{R}^3}$$. The methods involve the same weights for restriction and prolongation as in the case of planar triangulations and therefore are easy to implement. We prove logarithmic bounds of the convergence rates with constants solely depending on the ellipticity, the smoothers and on the regularity of the triangles forming the triangular surface. Our theoretical results are illustrated by numerical computations.

[1]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[2]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[3]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[4]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[5]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[6]  I. I. Bakelʹman,et al.  Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .

[7]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[8]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[9]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[10]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[11]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[12]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[13]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[14]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[15]  Harry Yserentant,et al.  A basic norm equivalence for the theory of multilevel methods , 1993 .

[16]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.