Continuous-flow electroreduction of carbon dioxide

Abstract Solar fuel generation through electrochemical CO2 conversion offers an attractive avenue to store the energy of sunlight in the form of chemical bonds, with the simultaneous remediation of a greenhouse gas. While impressive progress has been achieved in developing novel nanostructured catalysts and understanding the mechanistic details of this process, limited knowledge has been gathered on continuous-flow electrochemical reactors for CO2 electroreduction. This is indeed surprising considering that this might be the only way to scale-up this fledgling technology for future industrial application. In this review article, we discuss the parameters that influence the performance of flow CO2 electrolyzers. This analysis spans the overall design of the electrochemical cell (microfluidic or membrane-based), the employed materials (catalyst, support, etc.), and the operational conditions (electrolyte, pressure, temperature, etc.). We highlight R&D avenues offering particularly promising development opportunities together with the intrinsic limitations of the different approaches. By collecting the most relevant characterization methods (together with the relevant descriptive parameters), we also present an assessment framework for benchmarking CO2 electrolyzers. Finally, we give a brief outlook on photoelectrochemical reactors where solar energy input is directly utilized.

[1]  J. Strunk,et al.  Identification and exclusion of intermediates of photocatalytic CO₂ reduction on TiO₂ under conditions of highest purity. , 2016, Physical chemistry chemical physics : PCCP.

[2]  Guido Mul,et al.  Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction , 2016, Nature Communications.

[3]  Yoshio Hori,et al.  Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide , 2003 .

[4]  Geoff Kelsall,et al.  Tinned graphite felt cathodes for scale-up of electrochemical reduction of aqueous CO2 , 2015 .

[5]  Claudio Ampelli,et al.  Synthesis of solar fuels by a novel photoelectrocatalytic approach , 2010 .

[6]  Dennis Y.C. Leung,et al.  A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization , 2016 .

[7]  Walter Mérida,et al.  New Reference Electrode Approach for Fuel Cell Performance Evaluation , 2008 .

[8]  Feng Shi,et al.  Design of a Two-Compartment Electrolysis Cell for the Reduction of CO2 to CO in Tetrabutylammonium Perchlorate/Propylene Carbonate for Renewable Electrical Energy Storage , 2016 .

[9]  Ziad El Bitar,et al.  Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes—Comparison with indium foil , 2016 .

[10]  N. Wagner,et al.  Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes , 2014, Journal of Applied Electrochemistry.

[11]  Anders Hagfeldt,et al.  Bipolar Membrane‐Assisted Solar Water Splitting in Optimal pH , 2016 .

[12]  Jian Colin Sun,et al.  AC impedance technique in PEM fuel cell diagnosis—A review , 2007 .

[13]  Alexandra M.F.R. Pinto,et al.  Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment , 2017 .

[14]  Angel Irabien,et al.  Continuous electrochemical reduction of carbon dioxide into formate using a tin cathode: Comparison with lead cathode , 2014 .

[15]  Norbert Wagner,et al.  Transferring Electrochemical CO2 Reduction from Semi-Batch into Continuous Operation Mode Using Gas Diffusion Electrodes , 2016 .

[16]  Anil Verma,et al.  Effect of solid polymer electrolyte on electrochemical reduction of CO2 , 2012 .

[17]  Guangchun Li,et al.  Measurement of single electrode potentials and impedances in hydrogen and direct methanol PEM fuel cells , 2004 .

[18]  Yumei Zhai,et al.  The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. , 2011, ChemSusChem.

[19]  Hyoung-Juhn Kim,et al.  Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method , 2010 .

[20]  Feng Jiao,et al.  Nanostructured Metallic Electrocatalysts for Carbon Dioxide Reduction , 2015 .

[21]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[22]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[23]  Zhi-Kang Xu,et al.  Electrochemical reduction of gaseous CO2 with a catechol and polyethyleneimine co-deposited polypropylene membrane , 2016 .

[24]  Ibram Ganesh,et al.  Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review) , 2014 .

[25]  Ann Cornell,et al.  Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes. , 2016, Chemical reviews.

[26]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[27]  Robert Kutz,et al.  Electrochemical generation of syngas from water and carbon dioxide at industrially important rates , 2016 .

[28]  Angel Irabien,et al.  Electrochemical membrane reactors for the utilisation of carbon dioxide , 2016 .

[29]  Paul J. A. Kenis,et al.  Effect of Cations on the Electrochemical Conversion of CO2 to CO , 2013 .

[30]  H Meiners,et al.  [Effects of temperature]. , 1973, ZWR.

[31]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[32]  Akira Okumura,et al.  Preparation of cu-solid polymer electrolyte composite electrodes and application to gas-phase electrochemical reduction of CO2 , 1995 .

[33]  Chi Shing Wong,et al.  Solubility of carbon dioxide in aqueous HCl and NaHCO3 solutions from 278 to 298 K , 2005 .

[34]  José Solla-Gullón,et al.  Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size , 2015 .

[35]  Eric J. Dufek,et al.  Operation of a Pressurized System for Continuous Reduction of CO2 , 2012 .

[36]  Geping Yin,et al.  Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell , 2007 .

[37]  A. A. Kulikovskya,et al.  Positioning of a Reference Electrode in a PEM Fuel Cell , 2015 .

[38]  Jingjie Wu,et al.  Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell , 2014 .

[39]  Sichao Ma,et al.  Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. , 2014, ChemSusChem.

[40]  Claudio Ampelli,et al.  Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes , 2016 .

[41]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[42]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .

[43]  Juan Bisquert,et al.  Photoelectrochemical Solar Fuel Production , 2016 .

[44]  W. Gu,et al.  Durable PEM Fuel Cell Electrode Materials: Requirements and Benchmarking Methodologies , 2006 .

[45]  Jaeyoung Lee,et al.  Microstructural surface changes of electrodeposited Pb on gas diffusion electrode during electroreduction of gas‐phase CO2 , 2010 .

[46]  Juan Bisquert,et al.  Photoelectrochemical solar fuel production : from basic principles to advanced devices , 2016 .

[47]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[48]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[49]  Angel Irabien,et al.  Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes , 2014 .

[50]  Garikoitz Beobide,et al.  Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. , 2017, ChemSusChem.

[51]  Y. Tong,et al.  A straightforward implementation of in situ solution electrochemical ¹³C NMR spectroscopy for studying reactions on commercial electrocatalysts: ethanol oxidation. , 2015, Chemical communications.

[52]  Hui Li,et al.  Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: Scale-up , 2007 .

[53]  Jingjie Wu,et al.  Electrochemical Reduction of Carbon Dioxide II. Design, Assembly, and Performance of Low Temperature Full Electrochemical Cells , 2013 .

[54]  Emiliana Fabbri,et al.  Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO 2 -reduction reactions for (co-)electrolyzer development , 2016 .

[55]  A. Paul Alivisatos,et al.  Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. , 2014, Journal of the American Chemical Society.

[56]  Angel Irabien,et al.  Productivity and Selectivity of Gas‐Phase CO2 Electroreduction to Methane at Copper Nanoparticle‐Based Electrodes , 2017 .

[57]  José Solla-Gullón,et al.  Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution , 2015 .

[58]  Angel Irabien,et al.  Towards the electrochemical conversion of carbon dioxide into methanol , 2015 .

[59]  S. Ferro,et al.  Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. , 2006, Chemical Society reviews.

[60]  Siglinda Perathoner,et al.  Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons , 2007 .

[61]  Angel Irabien,et al.  Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol , 2016 .

[62]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[63]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[64]  Thomas I. Valdez,et al.  Electrochemical Conversion of Carbon Dioxide to Formate in Alkaline Polymer Electrolyte Membrane Cells , 2011 .

[65]  Jamie F. Thompson,et al.  Artificial Photosynthesis Device Development for CO_2 Photoelectrochemical Conversion. , 2016 .

[66]  Heidi Ottevaere,et al.  Membrane deflection in a flat membrane microcontactor: Experimental study of spacer features , 2016 .

[67]  Zhenyu Liu,et al.  Positioning the reference electrode in proton exchange membrane fuel cells: calculations of primary and secondary current distribution , 2004 .

[68]  Hubert A. Gasteiger,et al.  Proton Conduction and Oxygen Reduction Kinetics in PEM Fuel Cell Cathodes: Effects of Ionomer-to-Carbon Ratio and Relative Humidity , 2009 .

[69]  Burkhard Raguse,et al.  Energy storage by the electrochemical reduction of CO2 to CO at a porous Au film , 2002 .

[70]  Yu Zhang,et al.  Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO2 Electroreduction , 2015 .

[71]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[72]  Claudio Ampelli,et al.  Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels , 2013 .

[73]  Feng Jiao,et al.  An Ir-based anode for a practical CO2 electrolyzer , 2017 .

[74]  Jacqueline H. Chen,et al.  Progress in Energy and Combustion Science , 2017 .

[75]  Juan Carlos Serrano-Ruiz,et al.  Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes , 2016 .

[76]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[77]  Nathan S. Lewis,et al.  A Stabilized, Intrinsically Safe, 10% Efficient, Solar‐Driven Water‐Splitting Cell Incorporating Earth‐Abundant Electrocatalysts with Steady‐State pH Gradients and Product Separation Enabled by a Bipolar Membrane , 2016 .

[78]  Dong Liu,et al.  Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces , 2016 .

[79]  Andrés Parra,et al.  Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE , 2016 .

[80]  E. L. Miller,et al.  Photoelectrochemical water splitting , 2013 .

[81]  Fikile R. Brushett,et al.  The Effects of Catalyst Layer Deposition Methodology on Electrode Performance , 2013 .

[82]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[83]  Alessandro Galia,et al.  Development of an Electrochemical Process for the Simultaneous Treatment of Wastewater and the Conversion of Carbon Dioxide to Higher Value Products , 2017 .

[84]  Krishnan Rajeshwar Electron Transfer at Semiconductor‐Electrolyte Interfaces , 2008 .

[85]  Paul J A Kenis,et al.  A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density. , 2017, ChemSusChem.

[86]  Manuela Bevilacqua,et al.  Enhancement of the Efficiency and Selectivity for Carbon Dioxide Electroreduction to Fuels on Tailored Copper Catalyst Architectures , 2016 .

[87]  Manuela Bevilacqua,et al.  Recent Technological Progress in CO2 Electroreduction to Fuels and Energy Carriers in Aqueous Environments , 2015 .

[88]  Paul J. A. Kenis,et al.  Efficient Electrochemical Flow System with Improved Anode for the Conversion of CO2 to CO , 2014 .

[89]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[90]  Dennis Y.C. Leung,et al.  A high performance dual electrolyte microfluidic reactor for the utilization of CO2 , 2017 .

[91]  Christos T. Maravelias,et al.  Assessment of Solar‐to‐Fuels Strategies: Photocatalysis and Electrocatalytic Reduction , 2016 .

[92]  C. Oloman,et al.  Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 1: Process variables , 2006 .

[93]  Sung Jong Yoo,et al.  Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid , 2014 .

[94]  Yeonji Oh,et al.  Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. , 2013, Chemical Society reviews.

[95]  Jean-Michel Savéant,et al.  Catalysis of the electrochemical reduction of carbon dioxide. , 2013, Chemical Society reviews.

[96]  Alexis T. Bell,et al.  Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. , 2015, Physical chemistry chemical physics : PCCP.

[97]  Brian H. Dennis,et al.  Continuous flow photoelectrochemical reactor for solar conversion of carbon dioxide to alcohols , 2015 .

[98]  Zengo Furukawa,et al.  A General Framework for , 1991 .

[99]  Eric J. Dufek,et al.  Sampling dynamics for pressurized electrochemical cells , 2014, Journal of Applied Electrochemistry.

[100]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[101]  Byoungsu Kim,et al.  A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. , 2016, ChemSusChem.

[102]  G. Tayhas R. Palmore,et al.  Electrochemical Reduction of CO 2 at Copper Nanofoams , 2014 .

[103]  L. Peter,et al.  Photoelectrochemical water splitting : materials, processes and architectures , 2013 .

[104]  Alexis T Bell,et al.  Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. , 2016, Physical chemistry chemical physics : PCCP.

[105]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[106]  Hui Li,et al.  The Electro-Reduction of Carbon Dioxide in a Continuous Reactor , 2005 .

[107]  Jingjie Wu,et al.  Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO2 to fuels , 2016 .

[108]  V. Balzani Electron transfer in chemistry , 2001 .

[109]  Paul J. A. Kenis,et al.  One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer , 2016 .

[110]  Jingjie Wu,et al.  Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode , 2014 .

[111]  David,et al.  THE ELECTROCHEMICAL REDUCTION OF CO 2 TO C H 4 AND C 2 H 4 AT C u / N A F I O N ELECTRODES ( SOLID POLYMER ELECTROLYTE STRUCTURES ) , 2004 .

[112]  Xun Lu,et al.  The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. , 2016, Physical chemistry chemical physics : PCCP.

[113]  Dusan Strmcnik,et al.  On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction , 2010 .

[114]  Hui Li,et al.  Electrochemical processing of carbon dioxide. , 2008, ChemSusChem.

[115]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[116]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[117]  Robert Kutz,et al.  Sustainion Imidazolium‐Functionalized Polymers for Carbon Dioxide Electrolysis , 2017 .

[118]  Ronald L. Cook,et al.  High Rate Gas Phase CO 2 Reduction to Ethylene and Methane Using Gas Diffusion Electrodes , 1990 .

[119]  Eric J. Dufek,et al.  Chlor-syngas: Coupling of Electrochemical Technologies for Production of Commodity Chemicals , 2013 .

[120]  Paul J. A. Kenis,et al.  Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide , 2016 .

[121]  Andrew B. Bocarsly,et al.  Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide , 2014 .

[122]  Siglinda Perathoner,et al.  Perspectives and State of the Art in Producing Solar Fuels and Chemicals from CO2 , 2014 .

[123]  Christos T. Maravelias,et al.  A general framework for the assessment of solar fuel technologies , 2015 .

[124]  Garima Garg,et al.  Studies on Degradation of Copper Nano Particles in Cathode for CO2 Electrolysis to Organic Compounds , 2015 .

[125]  George A. Olah,et al.  Electrochemical CO2 Reduction: Recent Advances and Current Trends , 2014 .

[126]  Paul J. A. Kenis,et al.  Electrochemical Reduction of Carbon Dioxide on Cu/CuO Core/Shell Catalysts , 2014 .

[127]  Alexis T Bell,et al.  Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO₂. , 2015, Analytical chemistry.

[128]  Matthias Wessling,et al.  A membrane electrode assembly for the electrochemical synthesis of hydrocarbons from CO2(g) and H2O(g) , 2015 .

[129]  José Miguel Doña Rodríguez,et al.  Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry , 2000 .

[130]  Paul J. A. Kenis,et al.  Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO , 2016 .

[131]  Eric J. Dufek,et al.  Bench-scale electrochemical system for generation of CO and syn-gas , 2011 .

[132]  Ulrich Kunz,et al.  Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects , 2008 .

[133]  Nathan S Lewis,et al.  Research opportunities to advance solar energy utilization , 2016, Science.

[134]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[135]  Allen J. Bard,et al.  The electrochemical reduction of CO2 to CH4 and C2H4 at Cu/Nafion electrodes (solid polymer electrolyte structures) , 1988 .

[136]  Xianguo Li,et al.  Review of bipolar plates in PEM fuel cells: Flow-field designs , 2005 .

[137]  Frank E. Osterloh,et al.  Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations , 2017 .

[138]  Paitoon Tontiwachwuthikul,et al.  Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams , 2006 .

[139]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[140]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[141]  Antonio J. Martín,et al.  Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis , 2015 .

[142]  Anil Verma,et al.  Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel , 2013 .

[143]  Félix Barreras,et al.  Electrochemical reactors for CO2 reduction: From acid media to gas phase , 2016 .

[144]  Michael Schwartz,et al.  Carbon Dioxide Reduction to Alcohols using Perovskite‐Type Electrocatalysts , 1993 .

[145]  Jesse R. Hudkins,et al.  Rapid prototyping of electrolyzer flow field plates , 2016 .

[146]  Krishnan Rajeshwar,et al.  CHAPTER 11:Electro- and Photocatalytic Reduction of CO2: The Homogeneous and Heterogeneous Worlds Collide? , 2013 .

[147]  Hongbing Yu,et al.  Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte , 2014 .

[148]  Yasuo Hasegawa,et al.  Effect of flow regime of circulating water on a proton exchange membrane electrolyzer , 2010 .

[149]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[150]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[151]  Hongbing Yu,et al.  Enhanced electrochemical reduction of carbon dioxide to formic acid using a two-layer gas diffusion electrode in a microbial electrolysis cell , 2015 .