Interactive multiobjective random fuzzy programming: Necessity-based value at risk model

This article considers multiobjective linear programming problems (MOLPP) where random fuzzy variables are contained in objective functions and constraints. The purpose of the proposed decision making model is to optimize values at risk under the constraints using a necessity measure. An interacitve algorithm is constructed in order to obtain a satisficing solution for the decision maker from among a set of Pareto optimal solutions.

[1]  A. M. Geoffrion Stochastic Programming with Aspiration or Fractile Criteria , 1967 .

[2]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Keiichi Niwa,et al.  Interactive random fuzzy two-level programming through possibility-based fractile criterion optimality , 2010 .

[5]  Ichiro Nishizaki,et al.  Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability , 2008, Eur. J. Oper. Res..

[6]  José L. Verdegay Fuzzy Sets Based Heuristics for Optimization , 2010 .

[7]  M. Pritsker Evaluating Value at Risk Methodologies: Accuracy versus Computational Time , 1996 .

[8]  Hiroaki Ishii,et al.  Portfolio selection problems with random fuzzy variable returns , 2007, 2007 IEEE International Fuzzy Systems Conference.

[9]  J. Buckley Fuzzy Probability and Statistics , 2006 .

[10]  Masatoshi Sakawa,et al.  Interactive multiobjective random fuzzy programming problems through the possibility-based fractile model , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[11]  Cengiz Kahraman,et al.  Fuzzy Multi-Criteria Decision Making , 2008 .

[12]  Hiroaki Ishii,et al.  Portfolio selection problems with random fuzzy variable returns , 2009, Fuzzy Sets Syst..

[13]  Masatoshi Sakawa,et al.  Interactive multiobjective fuzzy random programming through the level set-based probability model , 2011, Inf. Sci..

[14]  S. Kataoka A Stochastic Programming Model , 1963 .

[15]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[16]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[17]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[19]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[20]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[21]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[22]  Hidetomo Ichihashi,et al.  Relative modalities and their use in possibilistic linear programming , 1990 .

[23]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[24]  Ichiro Nishizaki,et al.  A fuzzy random multiob jective 0-1 programming based on the expectation optimization model using possibility and necessity measures , 2004, Math. Comput. Model..

[25]  Masatoshi Sakawa,et al.  An interactive satisficing method for multiobjective random fuzzy programming problems through the possibility-based probability model , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[26]  Hiroshi Tsuda,et al.  Application of Fuzzy Theory to the Investment Decision Process , 2010, Fuzzy Optimization.

[27]  Didier Dubois Fuzzy sets and systems , 1980 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Hirotaka Nakayama,et al.  Aspiration Level Approach to Interactive Multi-Objective Programming and Its Applications , 1995 .

[30]  Didier Dubois Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Fuzzy Days.

[31]  I. M. Stancu-Minasian,et al.  Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming , 2001 .

[32]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[33]  M. K. Luhandjula Fuzzy stochastic linear programming: Survey and future research directions , 2006, Eur. J. Oper. Res..

[34]  Baoding Liu,et al.  Random fuzzy dependent-chance programming and its hybrid intelligent algorithm , 2002, Inf. Sci..

[35]  Johan W. Joubert,et al.  On some optimisation models in a fuzzy-stochastic environment , 2010, Eur. J. Oper. Res..