A CMOS Wideband Watt-Level 4096-QAM Digital Power Amplifier Using Reconfigurable Power-Combining Transformer

In this article, a wideband watt-level digital power amplifier (DPA) with high efficiency and large dynamic range is presented in CMOS technology for wireless applications. To achieve high output power with enhanced operation bandwidth (BW), the wideband matching network based on a reconfigurable power-combining transformer is used. Meanwhile, the <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> circuit is used to suppress the harmonics, which further improves the output power of the fundamental signal. In addition, the LO leakage is suppressed by the 12-bit power digital-to-analog converter (power DAC), which leads to high dynamic range of the proposed DPA. To verify the mechanism, a 1.2–3.6-GHz watt-level 12-bit polar DPA is implemented and fabricated using a conventional 40-nm CMOS technology. With 1.1-/2.5-V supply, the fabricated DPA exhibits peak output power (<inline-formula> <tex-math notation="LaTeX">$P_{\text {out}}$ </tex-math></inline-formula>) of 32.67 dBm, peak drain efficiency (DE) of 45.1%, and peak power-added efficiency (PAE) of 35.5% at 2 GHz. It supports 50-MSyms/s 256-QAM with average output power (<inline-formula> <tex-math notation="LaTeX">$P_{\text {avg}}$ </tex-math></inline-formula>) of 22.76 dBm, error vector magnitude (EVM) of −31.46 dB, and adjacent channel leakage ratio (ACLR) of −30.67 dBc, 10-MSyms/s 1024-QAM with <inline-formula> <tex-math notation="LaTeX">$P_{\text {avg}}$ </tex-math></inline-formula> of 25.54 dBm, EVM of −38.2 dB, and ACLR of −38.71 dBc, and 5-MSym/s 4096-QAM with <inline-formula> <tex-math notation="LaTeX">$P_{\text {avg}}$ </tex-math></inline-formula> of 22.97 dBm, EVM of −43.0 dB, and ACLR of −46.32 dBc, respectively.

[1]  Hongtao Xu,et al.  A 15-Bit Quadrature Digital Power Amplifier With Transformer-Based Complex-Domain Efficiency Enhancement , 2022, IEEE Journal of Solid-State Circuits.

[2]  Morteza S. Alavi,et al.  A Wideband Four-Way Doherty Bits-In RF-Out CMOS Transmitter , 2021, IEEE Journal of Solid-State Circuits.

[3]  Shih-Chang Hung,et al.  A Quadrature Class-G Complex-Domain Doherty Digital Power Amplifier , 2021, IEEE Journal of Solid-State Circuits.

[4]  Shih-Chang Hung,et al.  A Multimode Multi-Efficiency-Peak Digital Power Amplifier , 2020, IEEE Journal of Solid-State Circuits.

[5]  John D. Cressler,et al.  Highly Linear High-Power 802.11ac/ax WLAN SiGe HBT Power Amplifiers With a Compact 2nd-Harmonic-Shorted Four-Way Transformer and a Thermally Compensating Dynamic Bias Circuit , 2020, IEEE Journal of Solid-State Circuits.

[6]  Xun Luo,et al.  1.2–3.6 GHz 32.67 dBm 4096-QAM Digital PA Using Reconfigurable Power Combining Transformer for Wireless Communication , 2020, 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[7]  J. Walling,et al.  Leveraging Programmable Capacitor Arrays for Frequency-Tunable Digital Power Amplifiers , 2020, IEEE Transactions on Microwave Theory and Techniques.

[8]  Xun Luo,et al.  A 20–32-GHz Quadrature Digital Transmitter Using Synthesized Impedance Variation Compensation , 2020, IEEE Journal of Solid-State Circuits.

[9]  Rahmi Hezar,et al.  A High Efficiency Multi-Mode Outphasing RF Power Amplifier With 31.6 dBm Peak Output Power in 45nm CMOS , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Youngoo Yang,et al.  Broadband InGaP/GaAs HBT Power Amplifier Integrated Circuit Using Cascode Structure and Optimized Shunt Inductor , 2019, IEEE Transactions on Microwave Theory and Techniques.

[11]  Mike Shuo-Wei Chen,et al.  A Watt-Level Phase-Interleaved Multi-Subharmonic Switching Digital Power Amplifier , 2019, IEEE Journal of Solid-State Circuits.

[12]  Lei Zhou,et al.  A Highly Linear Wideband Polar Class-E CMOS Digital Doherty Power Amplifier , 2019, IEEE Transactions on Microwave Theory and Techniques.

[13]  Zengqi Wang,et al.  A Fully Integrated S-Band 1-Watt Phased Array T/R IC in 0.13μm SOI-CMOS Technology , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[14]  Shinichi Hori,et al.  A 1-Bit Digital Transmitter System using a 20-Gbps Quadruple-Cascode Class-D Digital Power Amplifier with 45nm SOI CMOS , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[15]  Elbert Bechthum,et al.  A CMOS Polar Class-G Switched-Capacitor PA With a Single High-Current Supply, for LTE NB-IoT and eMTC , 2019, IEEE Journal of Solid-State Circuits.

[16]  Jeng-Han Tsai,et al.  Design of a 5.2-GHz CMOS Power Amplifier Using TF-Based 2-Stage Dual-Radial Power Splitting/Combining Architecture , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Shih-Chang Hung,et al.  A Watt-Level Quadrature Class-G Switched-Capacitor Power Amplifier With Linearization Techniques , 2019, IEEE Journal of Solid-State Circuits.

[18]  Hao Min,et al.  A Compact Dual-Band Digital Polar Doherty Power Amplifier Using Parallel-Combining Transformer , 2019, IEEE Journal of Solid-State Circuits.

[19]  Stefano Pellerano,et al.  A CMOS Wideband Current-Mode Digital Polar Power Amplifier With Built-In AM–PM Distortion Self-Compensation , 2018, IEEE Journal of Solid-State Circuits.

[20]  Ali M. Niknejad,et al.  A 65-nm CMOS $I/Q$ RF Power DAC With 24- to 42-dB Third-Harmonic Cancellation and Up to 18-dB Mixed-Signal Filtering , 2018, IEEE Journal of Solid-State Circuits.

[21]  Harish Krishnaswamy,et al.  Wideband Mixed-Domain Multi-Tap Finite-Impulse Response Filtering of Out-of-Band Noise Floor in Watt-Class Digital Transmitters , 2017, IEEE Journal of Solid-State Circuits.

[22]  Morteza S. Alavi,et al.  An Intrinsically Linear Wideband Polar Digital Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[23]  Baher Haroun,et al.  A 29.5 dBm Class-E Outphasing RF Power Amplifier With Efficiency and Output Power Enhancement Circuits in 45nm CMOS , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Bumman Kim,et al.  Efficient Digital Quadrature Transmitter Based on IQ Cell Sharing , 2017, IEEE Journal of Solid-State Circuits.

[25]  Andrea Bevilacqua,et al.  13.9 A 1.1V 28.6dBm fully integrated digital power amplifier for mobile and wireless applications in 28nm CMOS technology with 35% PAE , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[26]  Yuan-Hung Hsiao,et al.  Design of a $V$ -Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[27]  Hua Wang,et al.  A Compact Broadband Mixed-Signal Power Amplifier in Bulk CMOS With Hybrid Class-G and Dynamic Load Trajectory Manipulation , 2016, IEEE Journal of Solid-State Circuits.

[28]  Xun Luo,et al.  Wideband Digital Power Amplifiers With Efficiency Improvement Using 40-nm LP CMOS Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[29]  Yan Li,et al.  A highly integrated multiband LTE SiGe power amplifier for envelope tracking , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[30]  Harish Krishnaswamy,et al.  A watt-level 2.4 GHz RF I/Q power DAC transmitter with integrated mixed-domain FIR filtering of quantization noise in 65 nm CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[31]  Xin-Yu Shih,et al.  A Highly-Efficient Multi-Band Multi-Mode All-Digital Quadrature Transmitter , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Songcheol Hong,et al.  A Digital Polar CMOS Power Amplifier With a 102-dB Power Dynamic Range Using a Digitally Controlled Bias Generator , 2014, IEEE Transactions on Microwave Theory and Techniques.

[33]  L. E. Larson,et al.  Monolithic Power-Combining Techniques for Watt-Level 2.4-GHz CMOS Power Amplifiers for WLAN Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[34]  Yorgos Palaskas,et al.  A Transformer-Combined 31.5 dBm Outphasing Power Amplifier in 45 nm LP CMOS With Dynamic Power Control for Back-Off Power Efficiency Enhancement , 2012, IEEE Journal of Solid-State Circuits.

[35]  Ali M. Niknejad,et al.  A fully-integrated efficient CMOS inverse Class-D power amplifier for digital polar transmitters , 2012, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[36]  Min-Su Kim,et al.  A Highly Linear Two-Stage Amplifier Integrated Circuit Using InGaP/GaAs HBT , 2010, IEEE Journal of Solid-State Circuits.

[37]  Amirpouya Kavousian,et al.  A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth , 2008, IEEE Journal of Solid-State Circuits.

[38]  Ockgoo Lee,et al.  Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers , 2008, IEEE Journal of Solid-State Circuits.

[39]  B. Nauta,et al.  Analytical Design Equations for Class-E Power Amplifiers with Finite DC-Feed Inductance and Switch On-Resistance , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[40]  P. Reynaert,et al.  A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE , 2005, IEEE Journal of Solid-State Circuits.

[41]  Harald Pretl,et al.  Design of a Fully Integrated Two-Stage Watt-Level Power Amplifier Using 28-nm CMOS Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[42]  Ted Johansson,et al.  A Review of Watt-Level CMOS RF Power Amplifiers , 2014, IEEE Transactions on Microwave Theory and Techniques.

[43]  Mona Mostafa Hella,et al.  Analysis and Optimization of Transformer-Based Series Power Combining for Reconfigurable Power Amplifiers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[44]  Jinho Jeong,et al.  A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.