Rapid computation of far-field statistics for random obstacle scattering

Abstract In this article, we consider the numerical approximation of far-field statistics for acoustic scattering problems in the case of random obstacles. In particular, we consider the computation of the expected far-field pattern and the expected scattered wave away from the scatterer as well as the computation of the corresponding variances. To that end, we introduce an artificial interface, which almost surely contains all realizations of the random scatterer. At this interface, we directly approximate the second order statistics, i.e., the expectation and the variance, of the Cauchy data by means of boundary integral equations. From these quantities, we are able to rapidly evaluate statistics of the scattered wave everywhere in the exterior domain, including the expectation and the variance of the far-field. By employing a low-rank approximation of the Cauchy data’s two-point correlation function, we drastically reduce the cost of the computation of the scattered wave’s variance. Numerical results are provided in order to demonstrate the feasibility of the proposed approach.

[1]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[2]  G. C. Hsiao,et al.  Properties of far‐field operators in acoustic scattering , 1989 .

[3]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[4]  R. Kress Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering , 1985 .

[5]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[6]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[7]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[8]  Helmut Harbrecht,et al.  Novel results for the anisotropic sparse grid quadrature , 2015, J. Complex..

[9]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[10]  G. C. Hsiao,et al.  Surface gradients and continuity properties for some integral operators in classical scattering theory , 1989 .

[11]  R. Kress Singular Boundary Integral Equations , 2014 .

[12]  Ralf Hiptmair,et al.  Large deformation shape uncertainty quantification in acoustic scattering , 2018, Adv. Comput. Math..

[13]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[14]  Michel Loève,et al.  Probability Theory I , 1977 .

[15]  C. Schwab,et al.  Electromagnetic wave scattering by random surfaces: Shape holomorphy , 2017 .

[16]  Fabio Nobile,et al.  Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..

[17]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[18]  A. Kirsch The domain derivative and two applications in inverse scattering theory , 1993 .

[19]  Olaf Steinbach,et al.  Fast Evaluation of Volume Potentials in Boundary Element Methods , 2010, SIAM J. Sci. Comput..

[20]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[21]  Xiaoqun Wang A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..

[22]  M. Peters,et al.  A note on the domain mapping method with rough diffusion coefficients , 2018 .

[23]  W. Tobocman,et al.  Inverse acoustic wave scattering in two dimensions from impenetrable targets , 1989 .

[24]  Helmut Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[25]  Michael Peters,et al.  Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.

[26]  Claudio Canuto,et al.  A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.

[27]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[28]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .