LISA technology and instrumentation

This article reviews the present status of the technology and instrumentation for the joint ESA/NASA gravitational wave detector LISA. It briefly describes the measurement principle and the mission architecture including the resulting sensitivity before focussing on a description of the main payload items, such as the interferometric measurement system, comprising the optical system with the optical bench and the telescope, the laser system and the phase measurement system, and the disturbance reduction system with the inertial sensor, the charge control system and the micropropulsion system. The review touches upon the requirements for the different subsystems that need to be fulfilled to obtain the overall sensitivity.

[1]  J. Hough Long baseline gravitational wave detectors-status and developments , 2011 .

[2]  Guido Mueller,et al.  Frequency-tunable pre-stabilized lasers for LISA via sideband locking , 2009 .

[3]  Francesco Biral,et al.  LISA Pathfinder test mass injection in geodesic motion: status of the on-ground testing , 2009 .

[4]  Walter Fichter,et al.  LISA Pathfinder: the experiment and the route to LISA , 2009 .

[5]  J. Livas,et al.  Laser frequency stabilization and control through offset sideband locking to optical cavities. , 2008, Optics express.

[6]  M. Ayre,et al.  The European Space Agency's LISA mission study: status and present results , 2008 .

[7]  D. DeBra,et al.  Gravity Probe B data analysis status and potential for improved accuracy of scientific results , 2008 .

[8]  General relativistic treatment of LISA optical links , 2008, 0805.4314.

[9]  Z. Haiman,et al.  Cosmological physics with black holes (and possibly white dwarfs) , 2008, 0803.3627.

[10]  Chelsea L. MacLeod,et al.  Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.

[11]  U A Johann,et al.  The European Space Agency's LISA mission study: status and present results , 2008 .

[12]  J. Livas,et al.  Tunable Frequency-stabilized Lasers for LISA , 2007 .

[13]  R. Lang,et al.  Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.

[14]  Benno Willke GEO600 : status and plans , 2007 .

[15]  Ilya Poberezhskiy,et al.  Waveguide PPLN second harmonic generator for NASA's space interferometry mission (SIM) , 2007, SPIE Optical Engineering + Applications.

[16]  Cedric Deffayet,et al.  Probing Gravity with Spacetime Sirens , 2007, 0709.0003.

[17]  G. Ciani,et al.  Thermal gradient-induced forces on geodesic reference masses for LISA , 2007, 0706.4402.

[18]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[19]  G. Ciani,et al.  Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries , 2006, gr-qc/0611030.

[20]  L. Carbone,et al.  Possibilities for measurement and compensation of stray DC electric fields acting on drag-free test masses , 2003, gr-qc/0309067.

[21]  Rachel J. Cruz,et al.  Arm‐Locking in a LISA‐like Hardware Model: A Status Report , 2006 .

[22]  G. Pucacco,et al.  Ground Based 2 DoF Test For LISA And LISA Pathfinder: A Status Report , 2006 .

[23]  R. Stebbins LISA Mission Tutorial , 2006 .

[24]  W. J. Weber,et al.  Testing of the UV discharge system for LISA Pathfinder , 2006 .

[25]  J. Camp,et al.  Iodine laser frequency stabilization for LISA , 2006 .

[26]  T. Sumner,et al.  The Charge‐Management System on LISA‐Pathfinder — Status & Outlook for LISA , 2006 .

[27]  C. Killow,et al.  Construction of the LTP Optical Bench Interferometer , 2006 .

[28]  Rachel J. Cruz,et al.  Time Delay Interferometry using the UF LISA Benchtop Simulator , 2006 .

[29]  J. Hough,et al.  Prototype optical bench instrument in the interferometer for the LISA–Pathfinder space mission , 2006 .

[30]  G. Ciani,et al.  Torsion pendulum facility for direct force measurements of LISA GRS related disturbances , 2006, gr-qc/0611036.

[31]  Guido Mueller,et al.  The LISA benchtop simulator at the University of Florida , 2006 .

[32]  Daniele Bortoluzzi,et al.  The Influence of Adhesion and Sub-Newton Pull-Off Forces on the Release of Objects in Outer Space , 2006 .

[33]  Z. Sodnik,et al.  Free-Space Laser Communication Activities in Europe: SILEX and beyond , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[34]  C. Hogan Gravitational Wave Sources from New Physics , 2006, astro-ph/0608567.

[35]  R. Lang,et al.  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.

[36]  J. Camp,et al.  Space interferometry application of laser frequency stabilization with molecular iodine. , 2006, Applied optics.

[37]  R. Stebbins,et al.  A demonstration of LISA laser communication , 2006, gr-qc/0605155.

[38]  R. Stebbins,et al.  Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer , 2006, gr-qc/0605154.

[39]  G. Woan,et al.  Principal component analysis for LISA: The time delay interferometry connection , 2006 .

[40]  Zoran Sodnik,et al.  Noise sources in the LTP heterodyne interferometer , 2006 .

[41]  D. Sigg,et al.  Status of the LIGO detectors , 2006 .

[42]  Robert L. Byer,et al.  LED deep UV source for charge management of gravitational reference sensors , 2006 .

[43]  Zoran Sodnik,et al.  Interferometry for the LISA technology package LTP: an update , 2006 .

[44]  M. Loupias,et al.  The status of VIRGO , 2006 .

[45]  B. C. Barish,et al.  Status of the LIGO detectors , 2006 .

[46]  Guido Mueller,et al.  Laser frequency stabilization for LISA , 2005 .

[47]  Achim Roth,et al.  Status of the TerraSAR-X Mission , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[48]  Jun Ye,et al.  Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. , 2005, Optics letters.

[49]  Markus Herz,et al.  Active laser frequency stabilization and resolution enhancement of interferometers for the measurement of gravitational waves in space , 2005, gr-qc/0506124.

[50]  Christian J. Killow,et al.  Hydroxide-catalysis bonding for stable optical systems for space , 2005 .

[51]  Frank Steier,et al.  Phase locking to a LISA arm: first results on a hardware model , 2005 .

[52]  S. Vitale,et al.  Gravitational compensation for the LISA pathfinder , 2005 .

[53]  S. Merkowitz,et al.  Self-gravity modelling for LISA , 2005 .

[54]  N. Brandt,et al.  LISA Pathfinder E2E performance simulation: optical and self-gravity stability analysis , 2005 .

[55]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[56]  T. Sumner,et al.  Evaluation of disturbances due to test mass charging for LISA , 2005 .

[57]  A. Buonanno,et al.  Testing general relativity and probing the merger history of massive black holes with LISA , 2005, gr-qc/0504017.

[58]  L. Carbone,et al.  Characterization of disturbance sources for LISA: torsion pendulum results , 2004, gr-qc/0412103.

[59]  L. Carbone,et al.  Measuring the LISA test mass magnetic properties with a torsion pendulum , 2004, gr-qc/0412093.

[60]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[61]  J. Vinet,et al.  Algebraic approach to time-delay data analysis for orbiting LISA , 2004 .

[62]  A. Brillet,et al.  Validation of a laser source for gravitational wave space detectors , 2004 .

[63]  Martin Tajmar,et al.  New Generation of Clusterable In-FEEP Emitters , 2004 .

[64]  Claus Braxmaier,et al.  LISA pathfinder optical interferometry , 2004, SPIE Astronomical Telescopes + Instrumentation.

[65]  J. Hough,et al.  Gravitational Wave and Particle Astrophysics Detectors , 2004 .

[66]  M. Rakhmanov,et al.  On the laser frequency stabilization by locking to a LISA arm , 2004, gr-qc/0408076.

[67]  J. Sylvestre Simulations of laser locking to a LISA arm , 2004, gr-qc/0408055.

[68]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[69]  Robert Eliot Spero,et al.  Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.

[70]  Ulrich Johann,et al.  The LTP interferometer and phasemeter , 2004 .

[71]  W. Steiger,et al.  Indium Field Emission Electric Propulsion Microthruster Experimental Characterization , 2004 .

[72]  T. Sumner,et al.  Unwanted, coherent signals in the LISA bandwidth due to test mass charging , 2004 .

[73]  T. J. Sumner,et al.  Description of charging/discharging processes of the LISA sensors , 2004 .

[74]  P. Dumont,et al.  Structural, thermal, optical and gravitational modelling for LISA , 2004 .

[75]  Stephen M Merkowitz,et al.  Structural, thermal, optical and gravitational modelling for LISA , 2004 .

[76]  Robert Eliot Spero,et al.  Postprocessed time-delay interferometry for , 2004 .

[77]  Joshua R. Smith,et al.  Mechanical loss associated with silicate bonding of fused silica , 2003 .

[78]  Development of the Gravity Probe B flight mission , 2003 .

[79]  Karsten Danzmann,et al.  LISA - An ESA Cornerstone Mission for the Detection and Observation of Gravitational Waves , 2003 .

[80]  Daniel A. Shaddock,et al.  Data Combinations Accounting for LISA Spacecraft Motion , 2003, gr-qc/0307080.

[81]  L. Carbone,et al.  Achieving geodetic motion for LISA test masses: ground testing results. , 2003, Physical review letters.

[82]  N. Cornish,et al.  The effects of orbital motion on LISA time delay interferometry , 2003, gr-qc/0306096.

[83]  P. Pinot,et al.  Volume magnetic susceptibility of gold–platinum alloys: possible materials to make mass standards for the watt balance experiment , 2003 .

[84]  D. Shoemaker,et al.  Ground-based interferometric gravitational-wave detectors in the LISA epoch , 2003 .

[85]  Paolo Bosetti,et al.  Gravitational sensor for LISA and its technology demonstration mission , 2003 .

[86]  Ulrich Johann,et al.  Interferometry for the LISA technology package (LTP) aboard SMART-2 , 2003 .

[87]  K Danzmann,et al.  Interferometry for the LISA technology package (LTP) aboard SMART-2 , 2003 .

[88]  Carsten Fallnich,et al.  Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission , 2002 .

[89]  Masaki Ando,et al.  Current status of TAMA , 2002 .

[90]  John W. Armstrong,et al.  Time-delay interferometry for LISA , 2002 .

[91]  M. Punturo,et al.  Fused silica suspension for the VIRGO optics: status and perspectives , 2002 .

[92]  W. J. Weber,et al.  Position sensors for LISA drag-free control , 2002 .

[93]  S. Dhurandhar,et al.  Algebraic approach to time-delay data analysis for LISA , 2001, gr-qc/0112059.

[94]  W. J. Weber,et al.  Progress in the development of a position sensor for LISA drag-free control , 2001 .

[95]  Robin T. Stebbins,et al.  Demonstration of the LISA phase measurement principle , 2001 .

[96]  Theodor W. Hänsch,et al.  Frequency Comparison and Absolute Frequency Measurement of I2-stabilized Lasers at 532 nm , 2001 .

[97]  Felix Heine,et al.  Space qualified ultra stable laser source , 2001, CLEO 2001.

[98]  Ken-ichi Ueda,et al.  The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry–Perot cavity and an iodine saturated absorption line , 2000 .

[99]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[100]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[101]  John W. Armstrong,et al.  Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation , 1999 .

[102]  A. Tünnermann,et al.  All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm. , 1999, Optics letters.

[103]  M. Fehringer,et al.  Indium liquid-metal ion sources as micronewton thrusters , 1998 .

[104]  Jun Ye,et al.  Portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm , 1998, Optics & Photonics.

[105]  Dz-Hung Gwo,et al.  Ultraprecision bonding for cryogenic fused-silica optics , 1998, Optics & Photonics.

[106]  Mariano Andrenucci,et al.  Experimental Performance of Field Emission Microthrusters , 1998 .

[107]  M. Fehringer,et al.  Indium Field Emission Microthrusters , 1997 .

[108]  T. Sumner,et al.  Electrostatic charging of the LISA proof masses , 1997 .

[109]  William M. Folkner,et al.  LISA orbit selection and stability , 1997 .

[110]  P. Touboul,et al.  Electrostatic accelerometers for the Equivalence Principle test in space , 2003 .

[111]  B. Schutz Gravitational-wave sources , 1996 .

[112]  J. Faller,et al.  Algorithms for Unequal-Arm Michelson Interferometers , 1996 .

[113]  J. Hough Laser Interferometric Gravitational Wave Detectors , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[114]  D. Budworth,et al.  The thermal and magnetic properties of some transition element alloys , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.