Exciton–polariton light–semiconductor coupling effects

[1]  B. C. Richards,et al.  Characterization of 1D photonic crystal nanobeam cavities using curved microfiber. , 2010, Optics express.

[2]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[3]  A. Kavokin Exciton‐polaritons in microcavities: Recent discoveries and perspectives , 2010 .

[4]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[5]  D. Miller,et al.  The role of optics in computing , 2010 .

[6]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[7]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[8]  A. Kavokin,et al.  Pinning and depinning of the polarization of exciton-polariton condensates at room temperature. , 2010, Physical review letters.

[9]  C. Schneider,et al.  Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. , 2010, Nature materials.

[10]  Stefan Strauf,et al.  Quantum optics: Towards efficient quantum sources , 2010 .

[11]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[12]  A. C. Funk,et al.  Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. , 2009, Physical review letters.

[13]  A. Poddubny,et al.  Photonic quasicrystalline and aperiodic structures , 2009, 0906.0735.

[14]  Y. Ota,et al.  Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system , 2009, 0905.3063.

[15]  Vinod M. Menon,et al.  Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals , 2009 .

[16]  Hideo Mabuchi,et al.  Cavity-QED models of switches for attojoule-scale nanophotonic logic , 2009, 0907.2720.

[17]  G. Wong,et al.  Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[18]  G Khitrova,et al.  One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects. , 2009, Optics express.

[19]  S. Osborne,et al.  Microcavity polaritonlike dispersion doublet in resonant Bragg gratings , 2009, 0904.0758.

[20]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[21]  D. Chemla,et al.  Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases , 2008, 0809.2080.

[22]  B. C. Richards,et al.  Excitonic polaritons in Fibonacci quasicrystals. , 2008, Optics express.

[23]  Eric Feltin,et al.  Room temperature polariton lasing in a GaN∕AlGaN multiple quantum well microcavity , 2008 .

[24]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[25]  G. Konstantinidis,et al.  A GaAs polariton light-emitting diode operating near room temperature , 2008, Nature.

[26]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[27]  Sophie Bouchoule,et al.  Polariton light-emitting diode in a GaAs-based microcavity , 2008 .

[28]  B. Deveaud,et al.  Second-order time correlations within a polariton Bose-Einstein condensate in a CdTe microcavity. , 2008, Physical review letters.

[29]  M. S. Skolnick,et al.  Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities , 2008, 0801.3536.

[30]  Yoshinori Tanaka,et al.  High-Q nanocavity with a 2-ns photon lifetime. , 2007, Optics express.

[31]  Hua Zhao,et al.  Spin polarized localization between two quantum dots , 2007 .

[32]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[33]  P. Littlewood,et al.  Collective coherence in planar semiconductor microcavities , 2007, cond-mat/0702166.

[34]  S. Reitzenstein,et al.  Photon statistics of semiconductor microcavity lasers. , 2007, Physical review letters.

[35]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[36]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[37]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[38]  U. Banin,et al.  Cavity QED with semiconductor nanocrystals , 2006 .

[39]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[40]  Stephan W Koch,et al.  Many-body correlations and excitonic effects in semiconductor spectroscopy , 2006 .

[41]  Galina Khitrova,et al.  Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing , 2005 .

[42]  All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures , 2005 .

[43]  A. Smirl,et al.  Stopping, storing and releasing light in quantum well Bragg structures , 2005, 2005 Quantum Electronics and Laser Science Conference.

[44]  B. Deveaud,et al.  Direct observation of the mott transition in an optically excited semiconductor quantum well. , 2005, Physical review letters.

[45]  E. Ivchenko Optical Spectroscopy of Semiconductor Nanostructures , 2005 .

[46]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[47]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[48]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[49]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[50]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[51]  M. Kira,et al.  Exciton-population inversion and terahertz gain in semiconductors excited to resonance. , 2004, Physical review letters.

[52]  S. Koch,et al.  Exciton formation and stability in semiconductor heterostructures , 2004 .

[53]  H. Gibbs,et al.  Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons. , 2003, Physical review letters.

[54]  D. Chemla,et al.  Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas , 2003, Nature.

[55]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[56]  K. Vahala Optical microcavities , 2003, Nature.

[57]  H. Gibbs,et al.  Polariton dispersion of periodic quantum well structures , 2002 .

[58]  Gregor Weihs,et al.  Condensation of Semiconductor Microcavity Exciton Polaritons , 2002, Science.

[59]  Axel Scherer,et al.  Quantum dot photonic crystal lasers , 2002 .

[60]  Alfred Forchel,et al.  Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .

[61]  S W Koch,et al.  Exciton formation in semiconductors and the influence of a photonic environment. , 2001, Physical review letters.

[62]  H. Gibbs,et al.  Saturation of normal-mode coupling in aluminum-oxide-aperture semiconductor nanocavities , 2001 .

[63]  Stephan W Koch,et al.  Exciton-polariton eigenmodes in light-coupled In 0.04 Ga 0.96 As/GaAs semiconductor multiple-quantum-well periodic structures , 2000 .

[64]  Koch,et al.  Unified picture of polariton propagation in bulk GaAs semiconductors , 2000, Physical review letters.

[65]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[66]  Stephan W Koch,et al.  Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures , 1999 .

[67]  Stephan W Koch,et al.  Optical lattices achieved by excitons in periodic quantum well structures , 1999 .

[68]  Stephan W Koch,et al.  Nonlinear optics of normal-mode-coupling semiconductor microcavities , 1999 .

[69]  R. Zeyher,et al.  COMMENT ON : ADDITIONAL BOUNDARY CONDITIONS : AN HISTORICAL MISTAKE. AUTHOR'S REPLY , 1999 .

[70]  D. F. Nelson,et al.  COMMENT ON : ADDITIONAL BOUNDARY CONDITIONS : AN HISTORICAL MISTAKE , 1999 .

[71]  H. Gibbs,et al.  Superradiant exciton/light coupling in semiconductor heterostructures—Part II: Experiments , 1999 .

[72]  Stephan W Koch,et al.  Microscopic Theory of Excitonic Signatures in Semiconductor Photoluminescence , 1998 .

[73]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[74]  Stephan W Koch,et al.  Influence of structural disorder and light coupling on the excitonic response of semiconductor microcavities , 1998 .

[75]  K. Henneberger,et al.  Additional Boundary Conditions: An Historical Mistake , 1998 .

[76]  Umberto Ravaioli,et al.  Hierarchy of simulation approaches for hot carrier transport in deep submicron devices , 1998 .

[77]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[78]  Stephan W Koch,et al.  Quantum Theory of Nonlinear Semiconductor Microcavity Luminescence Explaining “Boser” Experiments , 1997 .

[79]  Tai,et al.  Excitonic Nonlinearities of Semiconductor Microcavities in the Nonperturbative Regime. , 1996, Physical review letters.

[80]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[81]  Bauer,et al.  Terahertz Dynamics of Excitons in GaAs/AlGaAs Quantum Wells. , 1996, Physical review letters.

[82]  L. Andreani,et al.  Polaritons in superlattices and in microcavities , 1995 .

[83]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[84]  S. Sugano,et al.  Interband Optical Transitions in Extremely Anisotropic Semiconductors , 1995 .

[85]  R. H. M. Groeneveld,et al.  Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs–AlGaAs multiple quantum wells , 1994 .

[86]  Stanley,et al.  Measurement of cavity-polariton dispersion curve from angle resolved photoluminescence experiments. , 1994, Physical review letters.

[87]  Che Ting Chan,et al.  Photonic band gaps in three dimensions: New layer-by-layer periodic structures , 1994 .

[88]  Binder,et al.  Transient nonlinear optical response from excitation induced dephasing in GaAs. , 1993, Physical review letters.

[89]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[90]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[91]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[92]  Stephan W Koch,et al.  Stimulated Intrinsic Recombination Processes in II–VI Compounds† , 1978 .

[93]  H. Haug,et al.  On the Theory of Laser Action in Dense Exeiton Systems , 1977 .

[94]  S. Sugano,et al.  Interband Optical Transitions in Extremely Anisotropic Semiconductors. I. Bound and Unbound Exciton Absorption , 1966 .

[95]  D. G. Thomas,et al.  Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals , 1963 .

[96]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[97]  S. Pekar,et al.  The Theory of Electromagnetic Waves in a Crystal in which Excitons Are Produced , 1958 .

[98]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .