Alfven mode stability and wave-particle interaction in the JET tokamak: prospects for scenario development and control schemes in burning plasma experiments

We have investigated the effect of different ion cyclotron resonance frequency (ICRF) heating schemes, of error field modes, of the plasma shape and edge magnetic shear, and of the ion delB drift direction on the stability of Alfven eigenmodes (AEs). The use of multi-frequency or 2nd harmonic minority ICRF heating at high plasma density gives rise to a lower fast ion pressure gradient in the plasma core and to a reduced mode activity in the Alfven frequency range. Externally excited low-amplitude error fields lead to a much larger AE instability threshold, which we attribute to a moderate radial redistribution of the fast ions. The edge plasma shape has a clear stabilizing effect on high-n, radially localized AEs. The damping rate of n = 1 toroidal AEs is a factor 3 higher when the ion VB drift is directed towards the divertor. These results represent a useful step towards the extrapolation of current scenarios to the inclusion of fusion-born alpha particles in ITER, with possible application for feedback control schemes for the various ITER operating regimes.

[1]  K. Hopcraft,et al.  The effects of sheared toroidal plasma rotation on the internal kink mode in the banana regime , 2000 .

[2]  K. McClements,et al.  Interpretation of measurements of ICRF heated minority proton distributions in JET , 1997 .

[3]  T. H. Stix Fast-wave heating of a two-component plasma , 1975 .

[4]  R. König,et al.  Analysis of bulk ion heating with ICRH in JET high-performance plasmas , 1999 .

[5]  C. Giroud,et al.  On the measurement of toroidal rotation for the impurity and the main ion species on the Joint European Torus , 2002 .

[6]  R. Budny,et al.  Transitionless Enhanced Confinement and the Role of Radial Electric Field Shear , 1999 .

[7]  R. Fitzpatrick,et al.  STABILIZATION OF THE RESISTIVE SHELL MODE IN TOKAMAKS , 1996 .

[8]  D. Testa,et al.  Fast ion density measurements using high energy neutral particle analysis in JET , 2000 .

[9]  Ambrogio Fasoli,et al.  The effect of plasma shaping on the damping of low n Alfvén eigenmodes in JET tokamak plasmas , 2001 .

[10]  Fast particles-wave interaction in the Alfvén frequency range on the Joint European Torus tokamak , 2000 .

[11]  K. Wong,et al.  A review of Alfvén eigenmode observations in toroidal plasmas , 1999 .

[12]  H. Zohm,et al.  Identification of plasma-edge-related operational regime boundaries and the effect of edge instability on confinement in ASDEX Upgrade , 1997 .

[13]  G. Saibene,et al.  Edge ion parameters at the L-H transition on JET , 2004 .

[14]  L. Villard,et al.  Gyrokinetic modelling of macro-instabilities in high performance tokamak plasmas , 2001 .

[15]  F. G. Rimini,et al.  Combined heating experiments in ELM-free H modes in JET , 1999 .

[16]  Ion cyclotron resonance frequency heating of deuterium plasmas in the Joint European Torus: Modeling of the resonant minority ion distribution function , 1999 .

[17]  A. Hyatt,et al.  An Alfvén eigenmode similarity experiment , 2003 .

[18]  A. Gondhalekar,et al.  Impurity induced neutralization of megaelectronvolt energy protons in JET plasmas , 1997 .

[19]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[20]  Ambrogio Fasoli,et al.  Diagnosis and study of Alfvén eigenmodes stability in JET (invited) , 2003 .

[21]  Liu Chen,et al.  Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks , 1994 .

[22]  Ion cyclotron resonance frequency heating of deuterium plasmas in the Joint European Torus: Interpretation of measurements of minority hydrogen isotope ion distribution functions , 1999 .

[23]  M. S. Chance,et al.  High- n ideal and resistive shear Alfvén waves in tokamaks , 1985 .

[24]  Nonlinear effects in LH wave-plasma interaction , 2002 .

[25]  W. Kerner,et al.  Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .

[26]  T. Hellsten,et al.  Evidence for Regions of Nearly Suppressed Velocity Space Diffusion Caused by Finite Larmor Radius Effects during ICRF Heating , 1999 .

[27]  J. S. deGrassie,et al.  Spatially resolved toroidal plasma rotation with ICRF on JET , 2003 .

[28]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[29]  O. Sauter,et al.  Experimental test of damping models for n=1 toroidal Alfven eigenmodes in JET , 2003 .

[30]  G. Cottrell,et al.  A large-orbit model of fast ion slowing down during ICRH: Comparison with JET data , 1991 .

[31]  R. Aymar,et al.  The ITER design , 2002 .

[32]  Campbell,et al.  Direct measurement of the damping of toroidicity-induced Alfvén eigenmodes. , 1995, Physical review letters.

[33]  R. Balescu,et al.  Lagrangian versus Eulerian correlations and transport scaling , 2004 .