A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity

Roselle fibre is a type of natural fibre that can be utilized as a potential reinforcement filler in polymer composites for different applications. This work investigates the chemical, physical, mechanical, morphological, and thermal characteristics of roselle fibre at different levels of maturity (3, 6, and 9 months). The diameter of roselle fibre increases as the plant matures. However in contrast to this, the moisture content and water absorption of roselle fibre decrease as the plant matures. Chemical content of roselle fibres from plants of different ages indicate that as the plant matures, the cellulose content decreases. Tensile strength of roselle fibre decreases from 3 months old to 9 months old. The cross section of roselle fibre shows a typical morphology of bast fibre, where there is a lumen in the central of fibre.Thermal analysis results show that the effect of thermal decomposition of roselle fiber is almost the same for all plant ages. It is concluded that roselle fibres can be used as reinforced material for manufacturing of polymer composites. Based on its excellent properties, roselle fibres are suitable for different applications such as automotive and building components at lower cost.

[1]  A. Chaturvedi,et al.  HIBISCUS SABDARIFFA L A RICH SOURCE OF SECONDARY METABOLITES Research Article , 2011 .

[2]  M. Jawaid,et al.  Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review , 2011 .

[3]  Z Leman,et al.  Sugar palm (Arenga pinnata): Its fibres, polymers and composites. , 2013, Carbohydrate polymers.

[4]  H. Saleh,et al.  A Study On Mechanical, Thermal and Morphological Properties of Natural Fibre/Epoxy Comosite , 2012 .

[5]  C. Santulli,et al.  Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites , 2010 .

[6]  J. Jog,et al.  Natural fiber polymer composites: A review , 1999 .

[7]  A. Sjöberg,et al.  Flax and hemp fibres as raw materials for thermal insulations , 2008 .

[8]  Kenji Umemura,et al.  Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles , 2007, Journal of Wood Science.

[9]  John Ralph,et al.  Lignin Biosynthesis and Structure1 , 2010, Plant Physiology.

[10]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[11]  Hao Wang,et al.  A review on the tensile properties of natural fiber reinforced polymer composites , 2011 .

[12]  Asim Shahzad,et al.  A Study in Physical and Mechanical Properties of Hemp Fibres , 2013 .

[13]  R. R. M. M.Sc.,et al.  LONG VEGETABLE FIBRES , 1972 .

[14]  Romildo Dias Toledo Filho,et al.  Tensile behavior of high performance natural (sisal) fibers , 2008 .

[15]  R. Rowell,et al.  Characterization and Factors Effecting Fiber Properties , 2000 .

[16]  K. Marimuthu,et al.  A REVIEW ON NATURAL FIBERS , 2011 .

[17]  K. V. Velde,et al.  Thermal and Mechanical Properties of Flax Fibres as Potential Composite Reinforcement , 2001 .

[18]  M. T. Paridah,et al.  Oil Palm Biomass Fibres and Recent Advancement in Oil Palm Biomass Fibres Based Hybrid Biocomposites , 2012 .

[19]  B. Kaith,et al.  Development and Evaluation of Novel Roselle Graft Copolymer , 2011 .

[20]  Martin P. Ansell,et al.  The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix , 2004 .

[21]  S. Shankar,et al.  Characterization of natural fiber and composites – A review , 2013 .

[22]  Benjamin M. Wood,et al.  Natural fibre composite energy absorption structures , 2012 .

[23]  H. Takagi,et al.  Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure , 2014 .

[24]  C. Hill,et al.  Silane coupling agents used for natural fiber/polymer composites: A review , 2010 .

[25]  C. J. McGrath,et al.  The Effect , 2012 .

[26]  M. Misra,et al.  Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers , 2009, BioResources.

[27]  L. Tabil,et al.  Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review , 2007 .

[28]  N. Reddy,et al.  Biofibers from agricultural byproducts for industrial applications. , 2005, Trends in biotechnology.

[29]  S. Debnath,et al.  A Review on Natural Fibre Reinforced Polymer Composites , 2013 .

[30]  L. Taillefer,et al.  Anisotropic thermal conductivity of YBa2Cu3O7−δ , 1994 .

[31]  Longdi Cheng,et al.  Study on the breaking strength of jute fibres using modified Weibull distribution , 2009 .

[32]  R. Corley,et al.  The oil palm , 2003 .

[33]  Z. Ishak,et al.  Kenaf fiber reinforced composites: A review , 2011 .

[34]  M. Thiruchitrambalam,et al.  A Review on the Natural Fiber-Reinforced Polymer Composites for the Development of Roselle Fiber-Reinforced Polyester Composite , 2010 .

[35]  K. Chapman,et al.  Viscoelastic Properties of Kenaf Bast Fiber in Relation to Stem Age , 2009 .

[36]  J. Mwasiagi,et al.  Characterization of the Kenyan Hibiscus sabdariffa L. (Roselle) Bast Fibre , 2014 .

[37]  Saijod T. W. Lau,et al.  On the effect of different polymer matrix and fibre treatment on single fibre pullout test using betelnut fibres , 2011 .

[38]  Zaisheng Cai,et al.  Study on the Chemical Modification Process of Jute Fiber , 2008 .