A priori and a posteriori error analysis for a large-scale ocean circulation finite element model

We consider the finite element solution of the stream function–vorticity formulation for a large-scale ocean circulation model. First, we study existence and uniqueness of solution for the continuous and discrete problems. Under appropriate regularity assumptions we prove that the stream function can be computed with an error of order h in H1-seminorm. Second, we introduce and analyze an h-adaptive mesh refinement strategy to reduce the spurious oscillations and poor resolution which arise when convective terms are dominant. We propose an a posteriori anisotropic error indicator based on the recovery of the Hessian from the finite element solution, which allows us to obtain well adapted meshes. The numerical experiments show an optimal order of convergence of the adaptive scheme. Furthermore, this strategy is efficient to eliminate the oscillations around the boundary layer.

[1]  Michel Fortin,et al.  A directionally adaptive methodology using an edge-based error estimate on quadrilateral grids , 1996 .

[2]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[3]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[4]  Torsten Linß,et al.  The sdfem on Shishkin meshes for linear convection-diffusion problems , 2001, Numerische Mathematik.

[6]  M. Amara,et al.  Error indicators for the Navier-Stokes equations in stream function and vorticity formulation , 1998, Numerische Mathematik.

[7]  Martin Berzins,et al.  Mesh shape and anisotropic elements : theory and practice , 2000 .

[8]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[9]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[10]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[11]  Simona Perotto,et al.  An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .

[12]  Martin Stynes,et al.  EFFICIENT GENERATION OF ORIENTED MESHES FOR SOLVING CONVECTION-DIFFUSION PROBLEMS , 1997 .

[13]  Manuel Jesús Castro Díaz Generación y adaptación anisotropa de mallados de elementos finitos para la resolución numérica de ecuaciones en derivadas parciales. Aplicaciones , 1997 .

[14]  Andrew J. Weaver,et al.  A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .

[15]  S. Nicaise,et al.  A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .

[16]  T. Tachim Medjo Numerical Simulations of a Two-Layer Quasi-Geostrophic Equation of the Ocean , 2000, SIAM J. Numer. Anal..

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[19]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[20]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[21]  Mohamed Amara,et al.  An optimal C $^0$ finite element algorithm for the 2D biharmonic problem: theoretical analysis and numerical results , 2001, Numerische Mathematik.

[22]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[23]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[24]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[25]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[26]  S. Nicaise,et al.  The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .

[27]  Raúl A. Feijóo,et al.  Adaptive finite element computational fluid dynamics using an anisotropic error estimator , 2000 .

[28]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[29]  M. Picasso Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .

[30]  T. Tachim Medjo Mixed formulation of the two-layer quasi-geostrophic equations of the ocean , 1999 .

[31]  Christine Bernardi,et al.  Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation , 1999 .

[32]  G. Kunert Toward anisotropic mesh construction and error estimation in the finite element method , 2002 .

[33]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .