The Dark Side of the Halo Occupation Distribution

We analyze the halo occupation distribution (HOD) and two-point correlation function of galaxy-size dark matter halos using high-resolution dissipationless simulations of the concordance flat ΛCDM model. The halo samples include both the host halos and the "subhalos," distinct gravitationally bound halos within the virialized regions of larger host systems. We find that the HOD, the probability distribution for a halo of mass M to host a number of subhalos N, is similar to that found in semianalytic and N-body+gasdynamics studies. Its first moment, ⟨N⟩M, has a complicated shape consisting of a step, a shoulder, and a power-law high-mass tail. The HOD can be described by Poisson statistics at high halo masses but becomes sub-Poisson for ⟨N⟩M ≲ 4. We show that the HOD can be understood as a combination of the probability for a halo of mass M to host a central galaxy and the probability to host a given number Ns of satellite galaxies. The former can be approximated by a steplike function, while the latter can be well approximated by a Poisson distribution, fully specified by its first moment. The first moment of the satellite HOD can be well described by a simple power law ⟨Ns⟩ ∝ Mβ with β ≈ 1 for a wide range of number densities, redshifts, and different power spectrum normalizations. This formulation provides a simple but accurate model for the halo occupation distribution found in simulations. At z = 0, the two-point correlation function (CF) of galactic halos can be well fitted by a power law down to ~100 h-1 kpc with an amplitude and slope similar to those of observed galaxies. The dependence of correlation amplitude on the number density of objects is in general agreement with results from the Sloan Digital Sky Survey. At redshifts z ≳ 1, we find significant departures from the power-law shape of the CF at small scales, where the CF steepens because of a more pronounced one-halo component. The departures from the power law may thus be easier to detect in high-redshift galaxy surveys than at the present-day epoch. They can be used to put useful constraints on the environments and formation of galaxies. If the deviations are as strong as indicated by our results, the assumption of the single power law often used in observational analyses of high-redshift clustering is dangerous and is likely to bias the estimates of the correlation length and slope of the correlation function.

[1]  K. Shimasaku,et al.  Properties of host haloes of Lyman-break galaxies and Lyman α emitters from their number densities and angular clustering , 2003, astro-ph/0307207.

[2]  M. Magliocchetti,et al.  The halo distribution of 2dF galaxies , 2003 .

[3]  A. Szalay,et al.  Angular Clustering with Photometric Redshifts in the Sloan Digital Sky Survey: Bimodality in the Clustering Properties of Galaxies , 2003, astro-ph/0305603.

[4]  P. P. van der Werf,et al.  Detection of Strong Clustering of Red K-selected Galaxies at 2 < zphot < 4 in the Hubble Deep Field-South , 2003, astro-ph/0303165.

[5]  G. Bernstein,et al.  Weak-Lensing Results from the 75 Square Degree Cerro Tololo Inter-American Observatory Survey , 2003 .

[6]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[7]  M. Neyrinck,et al.  Understanding the PSCz galaxy power spectrum with N-body simulations , 2003, astro-ph/0302003.

[8]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[9]  J. Bullock,et al.  Halo Substructure and the Power Spectrum , 2002, astro-ph/0212339.

[10]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[11]  L. Guzzo,et al.  The REFLEX galaxy cluster survey - VII. Omega(m) and sigma(8) from cluster abundance and large-scale clustering , 2002, astro-ph/0208251.

[12]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[13]  Lars Hernquist,et al.  Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.

[14]  G. Bernstein,et al.  Weak Lensing Results from the 75 Square Degree CTIO Survey , 2002, astro-ph/0210604.

[15]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[16]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[17]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[18]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[19]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[20]  U. Seljak,et al.  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[21]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The Amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing , 2001, astro-ph/0112162.

[22]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[23]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[24]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[25]  M. Giavalisco,et al.  The Clustering Properties of Lyman Break Galaxies at Redshift z ~ 3 , 2001, astro-ph/0107447.

[26]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[27]  M. White,et al.  Power-spectrum normalization from the local abundance of rich clusters of galaxies , 2001 .

[28]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[29]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[30]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[31]  Y. Suto,et al.  Nonlinear Stochastic Biasing of Galaxies and Dark Halos in Cosmological Hydrodynamic Simulations , 2001, astro-ph/0104361.

[32]  M. White,et al.  The Halo Model and Numerical Simulations , 2000, astro-ph/0012518.

[33]  Mark Dickinson,et al.  Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications , 2000, astro-ph/0012249.

[34]  R. Wechsler,et al.  Galaxy Formation at z ~ 3: Constraints from Spatial Clustering , 2000, astro-ph/0011261.

[35]  R. Sheth,et al.  On the streaming motions of haloes and galaxies , 2000, astro-ph/0010137.

[36]  Linear and non-linear contributions to pairwise peculiar velocities , 2000, astro-ph/0009167.

[37]  Ravi K. Sheth Antonaldo Diaferio Peculiar velocities of galaxies and clusters , 2000, astro-ph/0009166.

[38]  Garching,et al.  Non-linear stochastic galaxy biasing in cosmological simulations , 1999, astro-ph/9912073.

[39]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[40]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[41]  J. Peacock,et al.  Simulations of galaxy formation in a cosmological volume , 2000, astro-ph/0010587.

[42]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[43]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[44]  Chung-Pei Ma,et al.  Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions , 2000, astro-ph/0003343.

[45]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[46]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[47]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[48]  C. Baugh,et al.  The dependence of velocity and clustering statistics on galaxy properties , 1999, astro-ph/9910488.

[49]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[50]  Usa,et al.  Density profiles of dark matter haloes: diversity and dependence on environment , 1999, astro-ph/9906260.

[51]  O. Fèvre,et al.  Clustering at High Redshift , 1999, astro-ph/9905314.

[52]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[53]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[54]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[55]  A. Klypin,et al.  The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes , 1998, astro-ph/9812311.

[56]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe — II. Evolution to high redshift , 1998, astro-ph/9809168.

[57]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[58]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[59]  ApJ, in press , 1999 .

[60]  A. Klypin,et al.  Evolution of Bias in Different Cosmological Models , 1998, astro-ph/9809202.

[61]  C. Baugh,et al.  The seeds of rich galaxy clusters in the Universe , 1998, Nature.

[62]  P. Pellegrini,et al.  Southern Sky Redshift Survey: Clustering of Local Galaxies , 1998, astro-ph/9803118.

[63]  G. Kauffmann,et al.  Environmental influences on dark matter haloes and consequences for the galaxies within them , 1997, astro-ph/9710125.

[64]  H. M. P. Couchman,et al.  Evolution of Structure in Cold Dark Matter Universes , 1997, astro-ph/9709010.

[65]  Y. Jing,et al.  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[66]  L. Guzzo,et al.  Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types , 1997, astro-ph/9706150.

[67]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[68]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[69]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[70]  J. Holtzman,et al.  Small-Scale Power Spectrum and Correlations in Lambda + Cold Dark Matter Models , 1996 .

[71]  C. Baugh THE REAL-SPACE CORRELATION FUNCTION MEASURED FROM THE APM GALAXY SURVEY , 1995, astro-ph/9512011.

[72]  J. Villumsen,et al.  ON THE EVOLUTION OF CLUSTERING AND THE BIASED GALAXY FORMATION SCENARIO , 1994 .

[73]  J. Villumsen,et al.  THE POWER SPECTRA OF DARK HALOS IN A COLD DARK MATTER UNIVERSE , 1994 .

[74]  J. Villumsen,et al.  The Spatial Correlation Properties of Galaxy Halos in a Cold Dark Matter Universe , 1992 .

[75]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[76]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[77]  R. Carlberg Dynamical biases in gravitational clustering , 1991 .