A Simple Proof of the Jamiołkowski Criterion for Complete Positivity of Linear Maps

We give a simple direct proof of the Jamiołkowski criterion to check whether a linear map between matrix algebras is completely positive or not. This proof is more accessible for physicists than other ones found in the literature and provides a systematic method to give any set of Kraus matrices of the Kraus decomposition.

[1]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[2]  Complete positivity and dissipative factorized dynamics , 2002, quant-ph/0208023.

[3]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[4]  J. Poizat,et al.  Quantum noise of laser diodes , 2000 .

[5]  J. Cirac,et al.  Reflections upon separability and distillability , 2001, quant-ph/0110081.

[6]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[7]  K. Kraus General state changes in quantum theory , 1971 .

[8]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[9]  J. Pillis Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .

[10]  D. Leung,et al.  Choi’s proof as a recipe for quantum process tomography , 2003 .

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  W. Stinespring Positive functions on *-algebras , 1955 .

[13]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[14]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[15]  Man-Duen Choi,et al.  Positive Linear Maps on C*-Algebras , 1972, Canadian Journal of Mathematics.

[16]  E. B. Davies Quantum theory of open systems , 1976 .

[17]  Timothy F. Havel Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups , 2002, quant-ph/0201127.

[18]  E. Størmer Positive linear maps of operator algebras , 2012 .

[19]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[20]  William Arveson,et al.  Subalgebras ofC*-algebras , 1969 .

[21]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[22]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.