Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3

We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and 11q13.3 were associated with RCC susceptibility below genome-wide significance. Two correlated variants (r2 = 0.99 in controls), rs11894252 (P = 1.8 × 10−8) and rs7579899 (P = 2.3 × 10−9), map to EPAS1 on 2p21, which encodes hypoxia-inducible-factor-2 alpha, a transcription factor previously implicated in RCC. The second locus, rs7105934, at 11q13.3, contains no characterized genes (P = 7.8 × 10−14). In addition, we observed a promising association on 12q24.31 for rs4765623, which maps to SCARB1, the scavenger receptor class B, member 1 gene (P = 2.6 × 10−8). Our study reports previously unidentified genomic regions associated with RCC risk that may lead to new etiological insights.

Paolo Vineis | Salvatore Panico | Vittorio Krogh | Eric J Duell | Jakob Linseisen | Mattias Johansson | Simon Heath | Nathaniel Rothman | Joanne S Colt | Wong-Ho Chow | Mark P Purdue | Eva Ardanaz | Heiner Boeing | Amy Hutchinson | Stephen J Chanock | Jolanta Lissowska | Jan Lubinski | Yuanqing Ye | Börje Ljungberg | Michael J Thun | Douglas F Easton | Elio Riboli | Paolo Boffetta | Kim Overvad | Egbert Oosterwijk | Meredith Yeager | Carmen Navarro | Kristian Hveem | Camilla Stoltenberg | Kay-Tee Khaw | Isabelle Romieu | Xia Pu | Vladimir Janout | Ghislaine Scelo | James D McKay | Françoise Clavel-Chapelon | Paul Brennan | Xifeng Wu | Faith G Davis | Olivier Cussenot | Neonila Szeszenia-Dabrowska | Rosamonde E Banks | Konstantin G Skryabin | Ivo Gut | L. Kiemeney | M. Thun | S. Heath | F. Clavel-Chapelon | E. Riboli | N. Rothman | S. Chanock | P. Vineis | A. Tjønneland | K. Overvad | D. Easton | Xifeng Wu | L. Vatten | G. Thomas | I. Gut | P. Pharoah | K. Jacobs | M. Yeager | Zhaoming Wang | A. Hutchinson | C. Berg | J. Fraumeni | D. Albanes | J. Virtamo | S. Weinstein | O. Cussenot | M. Lathrop | D. Zélénika | C. Wood | W. Chow | K. Aben | P. Brennan | V. Gaborieau | J. Lissowska | P. Peeters | D. Trichopoulos | H. Blanché | Y. Ye | Rajiv Kumar | P. Rudnai | K. Koppová | L. Moore | J. Lubiński | W. R. Diver | P. Boffetta | L. Forétova | I. Njølstad | S. Gapstur | K. Schwartz | K. Khaw | K. Hveem | E. Fabianova | C. Stoltenberg | I. Romieu | S. Vermeulen | H. Boeing | M. Johansson | D. Palli | S. L. V. D. Marel | V. Stevens | V. Krogh | S. Panico | R. Tumino | F. Davis | E. Duell | D. Zaridze | V. Matveev | V. Janout | V. Bencko | A. Mukeria | J. Toro | C. Navarro | K. Skryabin | G. Tell | P. Selby | R. Banks | A. Hsing | N. Chekanov | E. Boulygina | A. Mazur | E. Prokhortchouk | E. Oosterwijk | G. Scelo | R. Grubb | S. Benhamou | A. Bucur | M. Dorronsoro | J. Colt | J. McKay | B. Ljungberg | M. Purdue | E. Ardanaz | J. Quirós | N. Allen | M. Foglio | D. Lechner | J. Linseisen | María-José Sánchez | O. Shangina | J. Trubicka | Zhaoming Wang | Lambertus A Kiemeney | Mark Lathrop | Kevin B Jacobs | H Bas Bueno-de-Mesquita | Demetrius Albanes | Christine D Berg | Petra H M Peeters | Gilles Thomas | Anne Tjønneland | Dimitrios Trichopoulos | Jarmo Virtamo | Joseph F Fraumeni | Inger Njølstad | Ann W Hsing | Simone Benhamou | Miren Dorronsoro | Susan M Gapstur | Stephanie J Weinstein | Robert L Grubb | W Ryan Diver | Eleonora Fabianova | Mario Foglio | Domenico Palli | Diana Zelenika | P. Harnden | Peter J Selby | Jorge R Toro | Paul D Pharoah | Lenka Foretova | Rosario Tumino | Grethe S Tell | Victoria L Stevens | Sita H Vermeulen | David Zaridze | Vladimir Bencko | Rajiv Kumar | Kvetoslava Koppova | Doris Lechner | Oxana Shangina | Kendra L Schwartz | Lars Vatten | Christopher G Wood | Vsevolod Matveev | Valerie Gaborieau | Egor Prokhortchouk | Lee E Moore | Katja K H Aben | Patricia Harnden | X. Pu | Naomi E Allen | Anush Mukeria | Joanna Trubicka | Péter Rudnai | Alexandru Bucur | José Ramón Quirós | Maria-José Sanchez | Saskia L van der Marel | Alexander M Mazur | Eugenia S Boulygina | Nikolai N Chekanov | Hélène Blanche | M. Sánchez | H. Bueno-de-Mesquita | N. Szeszenia‐Da̧browska | L. Foretova | W. Diver | J. Mckay | E. Fabiánová | P. Brennan | E. Riboli | G. Thomas | Y. Ye | Rajiv Kumar | C. Berg

[1]  Manuel A. R. Ferreira,et al.  Practical aspects of imputation-driven meta-analysis of genome-wide association studies. , 2008, Human molecular genetics.

[2]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[3]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[4]  A. Rigotti,et al.  A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  G. Abecasis,et al.  Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies , 2006, Nature Genetics.

[6]  J. Peto,et al.  Genetics and the common cancers. , 2001, European journal of cancer.

[7]  Mimi C. Yu,et al.  Family history and risk of renal cell carcinoma. , 2001, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[8]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[9]  E. Rubin,et al.  Lower Plasma Levels and Accelerated Clearance of High Density Lipoprotein (HDL) and Non-HDL Cholesterol in Scavenger Receptor Class B Type I Transgenic Mice* , 1999, The Journal of Biological Chemistry.

[10]  P. Brennan,et al.  The epidemiology of bladder and kidney cancer , 2007, Nature Clinical Practice Urology.

[11]  O. Iliopoulos,et al.  Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. , 2004, Molecular cancer research : MCR.

[12]  Stephen Chanock,et al.  Population Substructure and Control Selection in Genome-Wide Association Studies , 2008, PloS one.

[13]  Geoffrey S. Tobias,et al.  Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.

[14]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[15]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: dominant markers and null alleles , 2007, Molecular ecology notes.

[16]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[17]  J. Bonventre,et al.  HIF in kidney disease and development. , 2009, Journal of the American Society of Nephrology.

[18]  A. Harris,et al.  Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. , 2003, Cancer research.

[19]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[20]  M. Terris,et al.  Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. , 2003, The American journal of pathology.

[21]  Hugues Sicotte,et al.  SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes , 2005, Nucleic Acids Res..

[22]  J. Fraumeni,et al.  A population--based case--control study of renal cell carcinoma. , 1984, Journal of the National Cancer Institute.

[23]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[24]  Wong-Ho Chow,et al.  Epidemiology and risk factors for kidney cancer , 2010, Nature Reviews Urology.

[25]  Christopher Gignoux,et al.  The 1000 Genomes Project: new opportunities for research and social challenges , 2010, Genome Medicine.

[26]  W. Linehan,et al.  Unique Opportunity for Disease-based Therapy* , 2009 .

[27]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[28]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[29]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[30]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[31]  High marks for GWAS , 2009, Nature Genetics.

[32]  E. Edelman,et al.  Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels , 1997, Nature.

[33]  W. Chow,et al.  Family History and the Risk of Kidney Cancer: a Multicenter Case-control Study in Central Europe , 2007, Cancer Epidemiology Biomarkers & Prevention.

[34]  A. Kibel Multiple newly identified loci associated with prostate cancer susceptibility , 2009 .

[35]  K. Kihara,et al.  Regulation of vascular endothelial growth factor transcription by endothelial PAS domain protein 1 (EPAS1) and possible involvement of EPAS1 in the angiogenesis of renal cell carcinoma , 2001, Cancer.

[36]  J. Ferlay,et al.  Globocan 2000 : cancer incidence, mortality and prevalence worldwide , 2001 .

[37]  Wei Zheng,et al.  A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33 , 2010, Nature Genetics.

[38]  W. Willett,et al.  Multiple loci identified in a genome-wide association study of prostate cancer , 2008, Nature Genetics.

[39]  J. Mclaughlin,et al.  International renal‐cell‐cancer study. VI. The role of medical and family history , 1996, International journal of cancer.

[40]  Elizabeth,et al.  Hereditary Kidney Cancer: Unique Opportunity for Disease- Based Therapy , 2011 .