The structure of free L11 and functional dynamics of L11 in free, L11-rRNA(58 nt) binary and L11-rRNA(58 nt)-thiostrepton ternary complexes.

[1]  J. Frank,et al.  Functional conformations of the L11-ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations. , 2006, RNA.

[2]  Daniel N. Wilson,et al.  EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition. , 2006, Biochemistry.

[3]  J. Frank,et al.  Interaction of the G' domain of elongation factor G and the C-terminal domain of ribosomal protein L7/L12 during translocation as revealed by cryo-EM. , 2005, Molecular cell.

[4]  Jill Trewhella,et al.  Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. , 2005, Journal of the American Chemical Society.

[5]  Ad Bax,et al.  Weak alignment NMR: a hawk-eyed view of biomolecular structure. , 2005, Current opinion in structural biology.

[6]  H. Schwalbe,et al.  Domain Reorientation and Induced Fit upon RNA Binding: Solution Structure and Dynamics of Ribosomal Protein L11 from Thermotoga maritima , 2005, Chembiochem : a European journal of chemical biology.

[7]  D. Draper,et al.  Interactions of the N-terminal Domain of Ribosomal Protein L11 with Thiostrepton and rRNA* , 2005, Journal of Biological Chemistry.

[8]  T. Steitz,et al.  The ribosome revealed. , 2005, Trends in biochemical sciences.

[9]  Yun-Xing Wang,et al.  NMR Structural Studies of Domain 1 of Receptor-associated Protein , 2004, Journal of biomolecular NMR.

[10]  A. Palmer,et al.  Mapping chemical exchange in proteins with MW > 50 kD. , 2003, Journal of the American Chemical Society.

[11]  D. Svergun,et al.  Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution , 2003, Quarterly Reviews of Biophysics.

[12]  J. Frank,et al.  A cryo-electron microscopic study of ribosome-bound termination factor RF2 , 2003, Nature.

[13]  K. Wüthrich,et al.  Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS , 2002, Journal of biomolecular NMR.

[14]  A. Annila,et al.  Quaternary structure built from subunits combining NMR and small-angle x-ray scattering data. , 2002, Biophysical journal.

[15]  R. Aparício,et al.  Structural insights into the beta-mannosidase from T. reesei obtained by synchrotron small-angle X-ray solution scattering enhanced by X-ray crystallography. , 2002, Biochemistry.

[16]  J. Farjanel,et al.  Biophysical Characterization of the C-propeptide Trimer from Human Procollagen III Reveals a Tri-lobed Structure* , 2001, The Journal of Biological Chemistry.

[17]  A. Bax,et al.  A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles* , 2001, Journal of biomolecular NMR.

[18]  J. Frank,et al.  Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. , 2001, Journal of molecular biology.

[19]  D. Torchia,et al.  Letter to the Editor: 1H, 15N, and 13C assignments and secondary structure identification for full-length ribosomal protein L11 from Thermus thermophilus , 2001, Journal of biomolecular NMR.

[20]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[21]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[22]  Joachim Frank,et al.  Visualization of Trna Movements on the Escherichia coli 70s Ribosome during the Elongation Cycle , 2000, The Journal of cell biology.

[23]  J. Trewhella,et al.  Calmodulin remains extended upon binding to smooth muscle caldesmon: a combined small-angle scattering and fourier transform infrared spectroscopy study. , 2000, Biochemistry.

[24]  L. Nicholson,et al.  Protein dynamics measurements by TROSY-based NMR experiments. , 2000, Journal of magnetic resonance.

[25]  S. Hasnain,et al.  Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin. , 2000, Biophysical journal.

[26]  A. Palmer,et al.  A TROSY CPMG sequence for characterizing chemical exchange in large proteins , 1999, Journal of biomolecular NMR.

[27]  J H Prestegard,et al.  Order matrix analysis of residual dipolar couplings using singular value decomposition. , 1999, Journal of magnetic resonance.

[28]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[29]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[30]  R. Garrett,et al.  Ribosomal Mechanics, Antibiotics, and GTP Hydrolysis , 1999, Cell.

[31]  G. Marius Clore,et al.  Improving the Packing and Accuracy of NMR Structures with a Pseudopotential for the Radius of Gyration , 1999 .

[32]  K Wüthrich,et al.  TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A M Gronenborn,et al.  A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. , 1998, Journal of magnetic resonance.

[34]  William J. Orts,et al.  The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology , 1998 .

[35]  S. Aota,et al.  Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. , 1998, Journal of molecular biology.

[36]  R. Garrett,et al.  The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. , 1998, Journal of molecular biology.

[37]  S. Grzesiek,et al.  The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23 S rRNA. , 1997, Journal of molecular biology.

[38]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[40]  A. Palmer,et al.  Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation , 1997, Journal of biomolecular NMR.

[41]  D. S. Garrett,et al.  Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. , 1997, Biochemistry.

[42]  J. Trewhella,et al.  The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study. , 1996, Biochemistry.

[43]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[44]  A. Bax,et al.  Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation , 1995 .

[45]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[46]  P E Wright,et al.  Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. , 1995, Science.

[47]  S. Douthwaite,et al.  The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. , 1994, Nucleic acids research.

[48]  Ad Bax,et al.  An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins , 1992 .

[49]  A. V. Semenyuk,et al.  GNOM – a program package for small-angle scattering data processing , 1991 .

[50]  L. Kay,et al.  Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. , 1989, Biochemistry.

[51]  R. Garrett,et al.  Antibiotic interactions at the GTPase‐associated centre within Escherichia coli 23S rRNA. , 1989, The EMBO journal.

[52]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[53]  E. Cundliffe,et al.  On the nature of antibiotic binding sites in ribosomes. , 1987, Biochimie.

[54]  E. Dabbs,et al.  Mutants of Escherichia coli lacking ribosomal protein L11. , 1980, The Journal of biological chemistry.

[55]  Jill K Thompson,et al.  Binding of thiostrepton to a complex of 23-S rRNA with ribosomal protein L11. , 1979, European journal of biochemistry.

[56]  Jill K Thompson,et al.  Ribose methylation and resistance to thiostrepton , 1979, Nature.

[57]  B. Jacrot,et al.  REVIEW ARTICLE: The study of biological structures by neutron scattering from solution , 1976 .

[58]  J. Modolell,et al.  Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[60]  Kurt Wüthrich,et al.  Effective rotational correlation times of proteins from NMR relaxation interference. , 2006, Journal of magnetic resonance.

[61]  Jill K Thompson,et al.  Thiostrepton-resistant mutants of Thermus thermophilus. , 2004, Nucleic acids research.

[62]  G. Zhu,et al.  TROSY-based NMR experiments for the study of macromolecular dynamics and hydrogen bonding. , 2004, Methods in molecular biology.

[63]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[64]  A. Bax,et al.  Dipolar couplings in macromolecular structure determination. , 2001, Methods in enzymology.

[65]  Volker Dötsch,et al.  Nuclear magnetic resonance of biological macromolecules , 2001 .

[66]  D. Draper,et al.  High resolution solution structure of ribosomal protein L11-C76, a helical protein with a flexible loop that becomes structured upon binding to RNA , 1997, Nature Structural Biology.

[67]  Y. Xing,et al.  Stabilization of a ribosomal RNA tertiary structure by ribosomal protein L11. , 1995, Journal of molecular biology.

[68]  David E. Draper,et al.  Thermodynamics of RNA unfolding: stabilization of a ribosomal RNA tertiary structure by thiostrepton and ammonium ion. , 1995, Journal of molecular biology.