Palomar Receive Terminal (PRT) for the Mars Laser Communication Demonstration (MLCD) Project

Significant technological advances were made toward utilizing the Hale telescope for receiving the faint laser communication signals transmitted from an optical transceiver on a spacecraft orbiting Mars. The so-called Palomar receive terminal design, which would have supported nominal downlink data rates of 1-30 Mbps, is described. Testing to validate technologies for near-Sun (3deg from edge of solar disc) daytime operations is also discussed. Finally, a laboratory end-to-end link utilizing a 64-ary pulse-position modulated photon-counting receiver and decoder that achieved predicted near-capacity (within 1.4 dB) performance is described.

[1]  Daniel V. Murphy,et al.  A Hybrid Stabilization Approach for Deep-Space Optical Communications Terminals , 2007, Proceedings of the IEEE.

[2]  Tianchu Li,et al.  2005 digest of the LEOS summer topical meetings , 2005 .

[3]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[4]  D.M. Boroson,et al.  Overview of the Mars laser communications demonstration project , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[5]  L.M. Candell LDES: a prototype array optical receiver for the Mars laser communications demonstration program , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[6]  Douglas S. Abraham,et al.  Prospects for a Next-Generation Deep-Space Network , 2007, Proceedings of the IEEE.

[7]  M.L. Stevens,et al.  The Mars lasercom terminal , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[8]  Don M. Boroson,et al.  Design of an Optical Photon Counting Array Receiver System for Deep-Space Communications , 2007, Proceedings of the IEEE.

[9]  Don M. Boroson,et al.  Mars laser communication demonstration: what it would have been , 2006, SPIE LASE.

[10]  W. Thomas Roberts Optical membrane technology for deep space optical communications filters , 2005 .

[11]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[12]  Don M. Boroson,et al.  Overview of the Mars laser communications demonstration project , 2005 .

[13]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  W. Thomas Roberts,et al.  Stray light observations at the 200-inch hale telescope on Palomar mountain , 2005 .

[16]  Abhijit Biswas,et al.  Approach for acquiring and tracking downlink from Mars using the Hale telescope , 2005, SPIE LASE.

[17]  Jon Hamkins,et al.  Deep-Space Optical Communications Downlink Budget: Modulation and Coding , 2003 .

[18]  T. Komarek,et al.  The 2009 Mars Telecom Orbiter mission , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[19]  Shlomo Shamai,et al.  Efficient Communication Over the Discrete-Time Memoryless Rayleigh Fading Channel with Turbo Coding/Decoding , 2000, Eur. Trans. Telecommun..

[20]  Chien-Chung Chen,et al.  Turning Palomar into a deep-space optical receiver , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[21]  Jing Sun,et al.  Interleavers for turbo codes using permutation polynomials over integer rings , 2005, IEEE Transactions on Information Theory.

[22]  A. Biswas,et al.  Deep-Space Optical Communications Downlink Budget from Mars: System Parameters , 2003 .

[23]  S. Brink Convergence of iterative decoding , 1999 .

[24]  Bernard L. Edwards,et al.  MLCD: overview of NASA's Mars laser communications demonstration system , 2004, SPIE LASE.

[25]  Robert J. McEliece,et al.  Practical codes for photon communication , 1981, IEEE Trans. Inf. Theory.

[26]  J. Hamkins,et al.  Reduced Complexity Decoding of Coded Pulse-Position Modulation Using Partial Statistics , 2005 .

[27]  Andrew J. Pickles,et al.  Feasibility of utilizing the 200-inch Hale telescope as a deep-space optical receiver , 2004, SPIE Optics + Photonics.

[28]  Don M. Boroson,et al.  Prospects for Improvement of Interplanetary Laser Communication Data Rates by 30 dB , 2007, Proceedings of the IEEE.

[29]  Jon Hamkins,et al.  Design of a Coded Modulation for Deep Space Optical Communications , 2006 .

[30]  Don M. Boroson,et al.  RF and Optical Communications: A Comparison of High Data Rate Returns From Deep Space in the 2020 Timeframe , 2007 .

[31]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[32]  R.J. Fitzgerald,et al.  The Mars laser communication demonstration , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[33]  Kamran Kiasaleh,et al.  Turbo-coded optical PPM communication systems , 1998 .

[34]  Richard Dekany,et al.  Initial test results from the Palomar 200-in. adaptive optics system , 1997, Optics & Photonics.