A comparison of three-dimensional continuum and shell elements for finite plasticity

[1]  Peter Wriggers,et al.  A FORMULATION OF THE QS6 ELEMENT FOR LARGE ELASTIC DEFORMATIONS , 1996 .

[2]  Peter Wriggers,et al.  A finite element method for stability problems in finite elasticity , 1995 .

[3]  Adnan Ibrahimbegovic,et al.  Finite elastoplastic deformations of space-curved membranes , 1994 .

[4]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[5]  Werner Wagner,et al.  A simple finite rotation formulation for composite shell elements , 1994 .

[6]  P. Wriggers,et al.  A fully non‐linear axisymmetrical quasi‐kirchhoff‐type shell element for rubber‐like materials , 1993 .

[7]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[8]  Peter Wriggers,et al.  Thin shells with finite rotations formulated in biot stresses : theory and finite element formulation , 1993 .

[9]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[10]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[11]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms , 1992 .

[12]  Peter Wriggers,et al.  A note on finite‐element implementation of pressure boundary loading , 1991 .

[13]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[14]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[15]  H. Schoop,et al.  Oberflächenorientierte Schalentheorien endlicher Verschiebungen , 1986 .

[16]  K. N. Morman The Generalized Strain Measure With Application to Nonhomogeneous Deformations in Rubber-Like Solids , 1986 .

[17]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[18]  J. C. Simo,et al.  Remarks on rate constitutive equations for finite deformation problems: computational implications , 1984 .

[19]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[20]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[21]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[22]  P. Wriggers,et al.  An axisymmetrical quasi-Kirchhoff-type shell element for large plastic deformations , 1995 .

[23]  Yavuz Başar,et al.  Theory and Finite-Element Formulation for Shell Structures Undergoing Finite Rotations , 1990 .

[24]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[25]  Ekkehard Ramm,et al.  Displacement dependent pressure loads in nonlinear finite element analyses , 1984 .

[26]  M. J. Sewell On configuration-dependent loading , 1967 .