Hypertranscendence and linear difference equations

<p>After Hölder proved his classical theorem about the Gamma function, there has been a whole bunch of results showing that solutions to linear difference equations tend to be hypertranscendental (<italic>i.e.</italic>, they cannot be solution to an algebraic differential equation). In this paper, we obtain the first complete results for solutions to general linear difference equations associated with the shift operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x right-arrow from bar x plus h"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy="false">↦<!-- ↦ --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">x\mapsto x+h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h element-of double-struck upper C Superscript asterisk"> <mml:semantics> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">h\in \mathbb {C}^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding="application/x-tex">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-difference operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x right-arrow from bar q x"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy="false">↦<!-- ↦ --></mml:mo> <mml:mi>q</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">x\mapsto qx</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q element-of double-struck upper C Superscript asterisk"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">q\in \mathbb {C}^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula> not a root of unity), and the Mahler operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x right-arrow from bar x Superscript p"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy="false">↦<!-- ↦ --></mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">x\mapsto x^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> integer). The only restriction is that we constrain our solutions to be expressed as (possibly ramified) Laurent series in the variable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x"> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding="application/x-tex">x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with complex coefficients (or in the variable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 slash x"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1/x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in some special case associated with the shift operator). Our proof is based on the parametrized difference Galois theory initiated by Hardouin and Singer. We also deduce from our main result a general statement about algebraic independence of values of Mahler functions and their derivatives at algebraic points.</p>

[1]  Mahler's method in several variables I: The theory of regular singular systems. , 2018, 1809.04823.

[2]  K. Hopcroft,et al.  Periods , 2020, Symptom Sorter.

[3]  B. Adamczewski,et al.  Mahler's method in several variables II: Applications to base change problems and finite automata , 2018, 1809.04826.

[4]  M. Singer,et al.  Consistent systems of linear differential and difference equations , 2016, Journal of the European Mathematical Society.

[5]  Sakinah,et al.  Vol. , 2020, New Medit.

[6]  Michael F. Singer,et al.  On the nature of the generating series of walks in the quarter plane , 2017 .

[7]  A. Scott,et al.  Ann Arbor , 1980 .

[8]  Julien Roques On the algebraic relations between Mahler functions , 2017 .

[9]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[10]  Lee A. Rubel,et al.  A survey of transcendentally transcendental functions , 1989 .

[11]  B. M. Fulk MATH , 1992 .

[12]  Phyllis J. Cassidy,et al.  Differential algebraic groups , 1972 .

[13]  K. Nishioka New approach in Mahler's method. , 1990 .

[14]  K. Mahler Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen , 1930 .

[15]  M. Bousquet-M'elou Rational and algebraic series in combinatorial enumeration , 2008, 0805.0588.

[16]  Ehud Hrushovski,et al.  Model theory of difference fields , 1999 .

[17]  Michael Wibmer,et al.  Existence of $\partial$-parameterized Picard-Vessiot extensions over fields with algebraically closed constants , 2011, 1104.3514.

[18]  Carlos E. Arreche,et al.  On the differential transcendence of the elliptic hypergeometric functions , 2018, 1809.05416.

[19]  Galois Theories of Linear Difference Equations: An Introduction , 2016 .

[20]  K. Nishioka A note on differentially algebraic solutions of first order linear difference equations , 1984 .

[21]  J. Kujawa,et al.  Algebraic groups , 2019, Introduction to Arithmetic Groups.

[22]  Julien Roques,et al.  Hypertranscendence of solutions of Mahler equations , 2015, Journal of the European Mathematical Society.

[23]  Chris Christie,et al.  Monthly , 2020, Definitions.

[24]  D. Hilbert Mathematical Problems , 2019, Mathematics: People · Problems · Results.

[25]  Ivar Fredholm Sur une classe d’équations fonctionnelles , 1903 .

[26]  Michael F. Singer,et al.  Galois Groups of Second and Third Order Linear Differential Equations , 1993, J. Symb. Comput..

[27]  R. Lathe Phd by thesis , 1988, Nature.

[28]  M. Singer,et al.  Model Theory with Applications to Algebra and Analysis: On the definitions of difference Galois groups , 2007, 0705.2975.

[29]  Lucia Di Vizio Approche galoisienne de la transcendance diff\'erentielle , 2014, 1404.3611.

[30]  Peter A. Hendriks,et al.  Solving Difference Equations in Finite Terms , 1999, J. Symb. Comput..

[31]  M. Wibmer Geometric Difference Galois Theory , 2010 .

[32]  K. Ishizaki Hypertranscendency of meromorphic solutions of a linear functional equations , 1998 .

[33]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[34]  R. Salem Algebraic numbers and Fourier analysis , 1963 .

[35]  Michael F. Singer,et al.  Galois Theory of Parameterized Differential Equations and Linear Differential Algebraic Groups , 2005 .

[36]  Y. André Différentielles non commutatives et théorie de Galois différentielle ou aux différences , 2001 .

[37]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[38]  Charlotte Hardouin,et al.  Hypertranscendance des systèmes aux différences diagonaux , 2008, Compositio Mathematica.

[39]  Carlos E. Arreche,et al.  Galois groups for integrable and projectively integrable linear difference equations , 2016, 1608.00015.

[40]  Pierre Nguyen Phu Qui Equations de Mahler et hypertranscendance , 2012 .

[41]  P. A. Hendricks An Algorithm Determining the Difference Galois Group of Second Order Linear Difference Equations , 1998 .

[42]  O. Hölder,et al.  Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen , 1886 .

[43]  Michael Wibmer,et al.  {\sigma}-Galois theory of linear difference equations , 2013, 1304.2649.

[44]  K. Mahler Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen , 1929 .

[45]  Eliakim Hastings Moore Concerning transcendentally transcendental functions , 1896 .

[46]  B. Adamczewski,et al.  Mahler's method in several variables and finite automata , 2020, 2012.08283.

[47]  R. Tennant Algebra , 1941, Nature.

[48]  K. Mahler Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen , 1930 .

[49]  E. M. Hartwell Boston , 1906 .

[50]  Boris Adamczewski,et al.  Méthode de Mahler : relations linéaires, transcendance et applications aux nombres automatiques , 2015, 1508.07158.

[51]  Julien Roques,et al.  Functional relations for solutions of q-difference equations , 2016, Mathematische Zeitschrift.

[52]  Anand Pillay,et al.  Model theory with applications to algebra and analysis , 2008 .

[53]  Marius van der Put,et al.  Galois Theory of Difference Equations , 1997 .

[54]  Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen , 1930 .

[55]  J. Ramis,et al.  About the growth of entire functions solutions of linear algebraic $q$-difference equations , 1992 .

[56]  Patrice Philippon Groupes de Galois et nombres automatiques , 2015, J. Lond. Math. Soc..

[57]  J. Valentin,et al.  Chapters 4–7 , 2005 .

[58]  C. Hardouin Galoisian approach to differential transcendence , 2016 .

[59]  Michael F. Singer,et al.  Differential Galois theory of linear difference equations , 2008, 0801.1493.

[60]  James S. Milne,et al.  Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field , 2017 .

[61]  Jean-Paul Bézivin,et al.  Solutions entières d'un système d'équations aux différences , 1993 .

[62]  P. Cassidy The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras , 1989 .