Hypertranscendence and linear difference equations
暂无分享,去创建一个
[1] Mahler's method in several variables I: The theory of regular singular systems. , 2018, 1809.04823.
[2] K. Hopcroft,et al. Periods , 2020, Symptom Sorter.
[3] B. Adamczewski,et al. Mahler's method in several variables II: Applications to base change problems and finite automata , 2018, 1809.04826.
[4] M. Singer,et al. Consistent systems of linear differential and difference equations , 2016, Journal of the European Mathematical Society.
[5] Sakinah,et al. Vol. , 2020, New Medit.
[6] Michael F. Singer,et al. On the nature of the generating series of walks in the quarter plane , 2017 .
[7] A. Scott,et al. Ann Arbor , 1980 .
[8] Julien Roques. On the algebraic relations between Mahler functions , 2017 .
[9] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[10] Lee A. Rubel,et al. A survey of transcendentally transcendental functions , 1989 .
[11] B. M. Fulk. MATH , 1992 .
[12] Phyllis J. Cassidy,et al. Differential algebraic groups , 1972 .
[13] K. Nishioka. New approach in Mahler's method. , 1990 .
[14] K. Mahler. Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen , 1930 .
[15] M. Bousquet-M'elou. Rational and algebraic series in combinatorial enumeration , 2008, 0805.0588.
[16] Ehud Hrushovski,et al. Model theory of difference fields , 1999 .
[17] Michael Wibmer,et al. Existence of $\partial$-parameterized Picard-Vessiot extensions over fields with algebraically closed constants , 2011, 1104.3514.
[18] Carlos E. Arreche,et al. On the differential transcendence of the elliptic hypergeometric functions , 2018, 1809.05416.
[19] Galois Theories of Linear Difference Equations: An Introduction , 2016 .
[20] K. Nishioka. A note on differentially algebraic solutions of first order linear difference equations , 1984 .
[21] J. Kujawa,et al. Algebraic groups , 2019, Introduction to Arithmetic Groups.
[22] Julien Roques,et al. Hypertranscendence of solutions of Mahler equations , 2015, Journal of the European Mathematical Society.
[23] Chris Christie,et al. Monthly , 2020, Definitions.
[24] D. Hilbert. Mathematical Problems , 2019, Mathematics: People · Problems · Results.
[25] Ivar Fredholm. Sur une classe d’équations fonctionnelles , 1903 .
[26] Michael F. Singer,et al. Galois Groups of Second and Third Order Linear Differential Equations , 1993, J. Symb. Comput..
[27] R. Lathe. Phd by thesis , 1988, Nature.
[28] M. Singer,et al. Model Theory with Applications to Algebra and Analysis: On the definitions of difference Galois groups , 2007, 0705.2975.
[29] Lucia Di Vizio. Approche galoisienne de la transcendance diff\'erentielle , 2014, 1404.3611.
[30] Peter A. Hendriks,et al. Solving Difference Equations in Finite Terms , 1999, J. Symb. Comput..
[31] M. Wibmer. Geometric Difference Galois Theory , 2010 .
[32] K. Ishizaki. Hypertranscendency of meromorphic solutions of a linear functional equations , 1998 .
[33] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[34] R. Salem. Algebraic numbers and Fourier analysis , 1963 .
[35] Michael F. Singer,et al. Galois Theory of Parameterized Differential Equations and Linear Differential Algebraic Groups , 2005 .
[36] Y. André. Différentielles non commutatives et théorie de Galois différentielle ou aux différences , 2001 .
[37] E. Kolchin. Differential Algebra and Algebraic Groups , 2012 .
[38] Charlotte Hardouin,et al. Hypertranscendance des systèmes aux différences diagonaux , 2008, Compositio Mathematica.
[39] Carlos E. Arreche,et al. Galois groups for integrable and projectively integrable linear difference equations , 2016, 1608.00015.
[40] Pierre Nguyen Phu Qui. Equations de Mahler et hypertranscendance , 2012 .
[41] P. A. Hendricks. An Algorithm Determining the Difference Galois Group of Second Order Linear Difference Equations , 1998 .
[42] O. Hölder,et al. Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen , 1886 .
[43] Michael Wibmer,et al. {\sigma}-Galois theory of linear difference equations , 2013, 1304.2649.
[44] K. Mahler. Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen , 1929 .
[45] Eliakim Hastings Moore. Concerning transcendentally transcendental functions , 1896 .
[46] B. Adamczewski,et al. Mahler's method in several variables and finite automata , 2020, 2012.08283.
[47] R. Tennant. Algebra , 1941, Nature.
[48] K. Mahler. Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen , 1930 .
[49] E. M. Hartwell. Boston , 1906 .
[50] Boris Adamczewski,et al. Méthode de Mahler : relations linéaires, transcendance et applications aux nombres automatiques , 2015, 1508.07158.
[51] Julien Roques,et al. Functional relations for solutions of q-difference equations , 2016, Mathematische Zeitschrift.
[52] Anand Pillay,et al. Model theory with applications to algebra and analysis , 2008 .
[53] Marius van der Put,et al. Galois Theory of Difference Equations , 1997 .
[54] Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen , 1930 .
[55] J. Ramis,et al. About the growth of entire functions solutions of linear algebraic $q$-difference equations , 1992 .
[56] Patrice Philippon. Groupes de Galois et nombres automatiques , 2015, J. Lond. Math. Soc..
[57] J. Valentin,et al. Chapters 4–7 , 2005 .
[58] C. Hardouin. Galoisian approach to differential transcendence , 2016 .
[59] Michael F. Singer,et al. Differential Galois theory of linear difference equations , 2008, 0801.1493.
[60] James S. Milne,et al. Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field , 2017 .
[61] Jean-Paul Bézivin,et al. Solutions entières d'un système d'équations aux différences , 1993 .
[62] P. Cassidy. The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras , 1989 .