Polymetallic Cobalt and Manganese Cages with Phosphinate and Phosphonate Ligands.

Addition of a coligand in reactions of phosphonates with salts of late 3d metals can lead to more soluble and tractable materials, such as the {Co13 } cage shown (Co: green; P: purple). The structure contains two central PhPO32- ligands, surrounded by a hexanuclear cobalt helix, capped by seven further cobalt sites.

[1]  V. Chandrasekhar,et al.  A Dodecanuclear Copper(II) Cage Containing Phosphonate and Pyrazole Ligands , 2000 .

[2]  G. Dismukes,et al.  Conversion of core oxos to water molecules by 4e-/4H+ reductive dehydration of the Mn4O2(6+) core in the manganese-oxo cubane complex Mn4O4(Ph2PO2)6: a partial model for photosynthetic water binding and activation. , 2000, Inorganic chemistry.

[3]  Coles,et al.  A family of polynuclear cobalt and nickel complexes stabilised by 2-pyridonate and carboxylate ligands , 2000, Chemistry.

[4]  R. Winpenny,et al.  Changing cage structures through inter-ligand repulsions , 2000 .

[5]  A. Seddon,et al.  Structural studies of heptanuclear cobalt complexes and larger oligomers based on heptanuclear fragments , 2000 .

[6]  David K. Henderson,et al.  Inter-ligand reactions: in situ formation of new polydentate ligands , 2000 .

[7]  A. Caneschi,et al.  Slow Magnetic Relaxation of [Et3NH]2Mn(CH3CN)4(H2O)2] [Mn10O4(biphen)4Br12] (biphen=2,2′-biphenoxide) at Very Low Temperature , 1999 .

[8]  G. Christou,et al.  High-Spin Molecules: Hexanuclear MnIII Clusters with [Mn6O4X4]6+ (X = Cl-, Br-) Face-Capped Octahedral Cores and S = 12 Ground States , 1999 .

[9]  A. Caneschi,et al.  Single-Molecule Magnet Behavior of a Tetranuclear Iron(III) Complex. The Origin of Slow Magnetic Relaxation in Iron(III) Clusters , 1999 .

[10]  T. Fehlner,et al.  The syntheses and X-ray crystal structures of novel transition metal cluster arrays containing 2–5 coordinated [(CO)9Co3(μ3-CCOO)]− ligands in a variety of geometries , 1999 .

[11]  Catherine P. Raptopoulou,et al.  Diegem-Diol-Form von (py)2CO als Ligand in Cobalt(II)-carboxylat-Clustern: ein Cubankomplex und eine neuartige neunkernige Verbindung, in der zwei quadratische Pyramiden mit gemeinsamem Scheitelpunkt vorliegen , 1999 .

[12]  A. Terzis,et al.  The gem-Diol Form of (py)2 CO as a Ligand in Cobalt(II) Carboxylate Clusters: A Cubane Complex and a Novel Nonanuclear Species with a Vertex-Sharing Double Square Pyramidal Structure. , 1999, Angewandte Chemie.

[13]  G. Dismukes,et al.  Protonation and Dehydration Reactions of the Mn(4)O(4)L(6) Cubane and Synthesis and Crystal Structure of the Oxidized Cubane [Mn(4)O(4)L(6)](+): A Model for the Photosynthetic Water Oxidizing Complex. , 1999, Inorganic chemistry.

[14]  H. Roesky,et al.  Molecular Phosphonate Cages: Model Compounds and Starting Materials for Phosphate Materials‡ , 1999 .

[15]  M. Nakano,et al.  A new class of single-molecule magnets: mixed-valent [Mn4(O2CMe)2(Hpdm)6][ClO4]2 with an S = 8 ground state , 1999 .

[16]  C. Incarvito,et al.  Isomeric Forms of (Mn12O12(O2CR)16(H2O)4) Single-Molecule Magnets , 1998 .

[17]  S. L. Castro,et al.  Single-molecule magnets: out-of-phase ac susceptibility signals from tetranuclear vanadium( III ) complexes with an S = 3 ground state , 1998 .

[18]  R. Winpenny,et al.  Clusters from Vertex‐ and Face‐Sharing Adamantane‐Like Units: A New Topology for Multinuclear Complexes , 1997 .

[19]  Richard E. P. Winpenny,et al.  Metallcluster aus ecken‐ und flächenverknüpften adamantanartigen Einheiten: eine neue Topologie bei Mehrkernkomplexen , 1997 .

[20]  C. Sangregorio,et al.  QUANTUM TUNNELING OF THE MAGNETIZATION IN AN IRON CLUSTER NANOMAGNET , 1997 .

[21]  A. G. Whittaker,et al.  Synthesis, structural characterisation and preliminary magnetic studies of a tetraicosanuclear cobalt coordination complex , 1997 .

[22]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[23]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[24]  D. Adams,et al.  Site-specific ligand variation in manganese–oxide cubane complexes, and unusual magnetic relaxation effects in [Mn4O4X(OAc)3(dbm)3](X = N3–, OCN– Hdbm = dibenzoylmethane) , 1995 .

[25]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[26]  Dante Gatteschi,et al.  High-spin molecules: [Mn12O12(O2CR)16(H2O)4] , 1993 .

[27]  J. McCusker,et al.  Preparation and properties of models for the photosynthetic water oxidation center: Spin frustration in the [Mn4O2(O2CR)7(PiC)2] - anion , 1991 .

[28]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[29]  P. Boyd,et al.  Preparation, structure, and magnetochemistry of hexanuclear manganese oxide complexes: chemically and thermally induced aggregation of aquahexakis(benzoato)oxobis(pyridine)trimanganese forming products containing the [Mn6O2]10+ core , 1989 .

[30]  A. Caneschi,et al.  Preparation, crystal structure, and magnetic properties of an oligonuclear complex with 12 coupled spins and an S = 12 ground state , 1988 .

[31]  G. Christou,et al.  Preparation and physical properties of trinuclear oxo-centered manganese complexes of general formulation [Mn3O(O2CR)6L3]0,+ (R = methyl or phenyl; L = a neutral donor group) and the crystal structures of [Mn3O(O2CMe)6(pyr)3](pyr) and [Mn3O(O2CPh)6(pyr)2(H2O)].cntdot.0.5MeCN , 1987 .

[32]  M. Hursthouse,et al.  Preparation, crystal structure, magnetic properties, and chemical reactions of a hexanuclear mixed valence manganese carboxylate , 1986 .