From protein structure to function via single crystal optical spectroscopy

The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.

[1]  Anton Barty,et al.  Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser , 2014, Nature.

[2]  E. Henry,et al.  Oxygen binding by single crystals of hemoglobin: the problem of cooperativity and inequivalence of alpha and beta subunits. , 1996, Proteins.

[3]  R. Owen,et al.  Combining X-ray crystallography and single-crystal spectroscopy to probe enzyme mechanisms. , 2009, Biochemical Society transactions.

[4]  Ruth Nussinov,et al.  Free energy diagrams for protein function. , 2014, Chemistry & biology.

[5]  E. Henry,et al.  Experimental basis for a new allosteric model for multisubunit proteins , 2014, Proceedings of the National Academy of Sciences.

[6]  G. Thomas,et al.  Microcrystals of tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium are catalytically active. , 1987, Biochemistry.

[7]  Paola Storici,et al.  Structures of γ-Aminobutyric Acid (GABA) Aminotransferase, a Pyridoxal 5′-Phosphate, and [2Fe-2S] Cluster-containing Enzyme, Complexed with γ-Ethynyl-GABA and with the Antiepilepsy Drug Vigabatrin* , 2003, Journal of Biological Chemistry.

[8]  C. Wilmot,et al.  Synergy within structural biology of single crystal optical spectroscopy and X-ray crystallography. , 2007, Current opinion in structural biology.

[9]  Glen Eugene Kellogg,et al.  Very empirical treatment of solvation and entropy: a force field derived from Log Po/w , 2001, J. Comput. Aided Mol. Des..

[10]  V. Adam,et al.  Structural basis of photoswitching in fluorescent proteins. , 2014, Methods in molecular biology.

[11]  K. Lowe,et al.  Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels , 2006, Protein science : a publication of the Protein Society.

[12]  A. Mozzarelli,et al.  Structure and oxygen affinity of crystalline desArg141 alpha human hemoglobin A in the T state. , 1995, Journal of molecular biology.

[13]  Gale Rhodes 3 – Protein Crystals , 1993 .

[14]  Alessio Amadasi,et al.  Pyridoxal 5'-phosphate enzymes as targets for therapeutic agents. , 2007, Current medicinal chemistry.

[15]  Alexander S. Bayden,et al.  Design of O-acetylserine sulfhydrylase inhibitors by mimicking nature. , 2010, Journal of medicinal chemistry.

[16]  Andrea Mozzarelli,et al.  Is cooperative oxygen binding by hemoglobin really understood? , 1999, Nature Structural Biology.

[17]  N. Shibayama,et al.  Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels. , 1995, Journal of molecular biology.

[18]  Andrea Mozzarelli,et al.  Exploring and exploiting allostery: Models, evolution, and drug targeting. , 2011, Biochimica et biophysica acta.

[19]  E. Henry,et al.  A tertiary two-state allosteric model for hemoglobin. , 2002, Biophysical chemistry.

[20]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[21]  M. Perutz,et al.  Allosteric mechanism of haemoglobin: rupture of salt-bridges raises the oxygen affinity of the T-structure. , 1998, Journal of molecular biology.

[22]  F. Valetti,et al.  X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: a multidisciplinary characterization of catechol 1,2 dioxygenase. , 2011, Biochimica et biophysica acta.

[23]  A. Mozzarelli,et al.  Catalytic activity of aspartate aminotransferase in the crystal. Equilibrium and kinetic analysis. , 1979, European journal of biochemistry.

[24]  E. Henry,et al.  Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect , 1991, Nature.

[25]  E. Henry,et al.  Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis. , 2013, Biochemistry.

[26]  R R Newell Radiation Damage. , 1956, Science.

[27]  G. Bricogne,et al.  Trapping of the Thioacylglyceraldehyde-3-phosphate Dehydrogenase Intermediate from Bacillus stearothermophilus , 2008, Journal of Biological Chemistry.

[28]  K. B. Ward,et al.  X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. , 1988, The Journal of biological chemistry.

[29]  P. Carey,et al.  Kinetic crystallography by Raman microscopy. , 2011, Biochimica et biophysica acta.

[30]  W. Hendrickson,et al.  A cooperative hemoglobin with directly communicating hemes. The Scapharca inaequivalvis homodimer. , 1990, Biophysical chemistry.

[31]  S. Antonyuk,et al.  Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy. , 2014, Acta crystallographica. Section D, Biological crystallography.

[32]  R. Singh,et al.  Atomic level description of the domain closure in a dimeric enzyme: thermus thermophilus 3-isopropylmalate dehydrogenase. , 2011, Molecular bioSystems.

[33]  A. Vergara,et al.  Role of tertiary structures on the Root effect in fish hemoglobins. , 2013, Biochimica et biophysica acta.

[34]  A. Mozzarelli,et al.  Structure and Oxygen Affinity of Crystalline des-His-146β Human Hemoglobin in the T State* , 1997, The Journal of Biological Chemistry.

[35]  O. Poluektov,et al.  Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals. , 2008, Biochemistry.

[36]  H. Frauenfelder,et al.  The Energy Landscape , 2001 .

[37]  Antoine Royant,et al.  Advances in kinetic protein crystallography. , 2005, Current opinion in structural biology.

[38]  N. Shibayama,et al.  Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme. , 1999, Journal of molecular biology.

[39]  H. Hersleth,et al.  How different oxidation states of crystalline myoglobin are influenced by X-rays. , 2011, Biochimica et biophysica acta.

[40]  C. Schulze-Briese,et al.  Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-Vis spectroscopy and X-ray crystallography. , 2007, Journal of synchrotron radiation.

[41]  S. Remington,et al.  Green fluorescent protein: A perspective , 2011, Protein science : a publication of the Protein Society.

[42]  R. Ravelli,et al.  Colouring cryo-cooled crystals: online microspectrophotometry , 2009, Journal of synchrotron radiation.

[43]  A. Mozzarelli,et al.  Catalytic and regulatory properties of D-glyceraldehyde-3-phosphate dehydrogenase in the crystal. Spectral properties and chemical reactivity of a chromophoric acyl-enzyme intermediate. , 1977, Journal of molecular biology.

[44]  Jacqueline Ridard,et al.  Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. , 2013, Journal of the American Chemical Society.

[45]  S. Bettati,et al.  Structure and single crystal spectroscopy of Green Fluorescent Proteins. , 2011, Biochimica et biophysica acta.

[46]  A. Mozzarelli,et al.  Microspectrophotometry for structural enzymology. , 2004, Current opinion in structural biology.

[47]  C. Schulze-Briese,et al.  A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source , 2009, Journal of synchrotron radiation.

[48]  N. Shibayama,et al.  Structures and Oxygen Affinities of Crystalline Human Hemoglobin C (β6 Glu→Lys) in the R and R2 Quaternary Structures* , 2011, The Journal of Biological Chemistry.

[49]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[50]  Gabriele Cruciani,et al.  A Common Reference Framework for Analyzing/Comparing Proteins and Ligands. Fingerprints for Ligands And Proteins (FLAP): Theory and Application , 2007, J. Chem. Inf. Model..

[51]  E. Henry,et al.  Oxygen binding by α(Fe2+)2β(Ni2+)2 hemoglobin crystals , 2000, Protein science : a publication of the Protein Society.

[52]  Karl Edman,et al.  Analyzing protein functions in four dimensions , 2000, Nature Structural Biology.

[53]  A. Mozzarelli,et al.  Tyrosine phenol‐lyase and tryptophan indole‐lyase encapsulated in wet nanoporous silica gels: Selective stabilization of tertiary conformations , 2004, Protein science : a publication of the Protein Society.

[54]  G. Eichele,et al.  Catalytic activity in crystals of mitochondrial aspartate aminotransferase as detected by microspectrophotometry. , 1978, The Journal of biological chemistry.

[55]  R. Liddington,et al.  High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin. , 1994, Journal of molecular biology.

[56]  M. Noirclerc-Savoye,et al.  Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. , 2011, Journal of structural biology.

[57]  S. Bernhard,et al.  Are the structure and function of an enzyme the same in aqueous solution and in the wet crystal? , 1970, Journal of molecular biology.

[58]  M. Fraaije,et al.  Snapshots of Enzymatic Baeyer-Villiger Catalysis , 2011, The Journal of Biological Chemistry.

[59]  R. Pahl,et al.  Tracking X-ray-derived redox changes in crystals of a methylamine dehydrogenase/amicyanin complex using single-crystal UV/Vis microspectrophotometry. , 2007, Journal of synchrotron radiation.

[60]  N. Shibayama,et al.  Capturing the hemoglobin allosteric transition in a single crystal form. , 2014, Journal of the American Chemical Society.

[61]  E. Henry,et al.  Evolution of allosteric models for hemoglobin , 2007, IUBMB life.

[62]  Anna Marabotti,et al.  Energetics of the protein-DNA-water interaction , 2007, BMC Structural Biology.

[63]  T. Clausen,et al.  Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5′‐phosphate‐dependent protein acting as a haemolytic enzyme , 2000, The EMBO journal.

[64]  Uwe Bergmann,et al.  X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  V. Adam,et al.  Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements , 2007 .

[66]  J. Hajdu,et al.  Fast crystallography and time-resolved structures. , 1993, Annual review of biophysics and biomolecular structure.

[67]  V. Adam,et al.  A microspectrophotometer for UV–visible absorption and fluorescence studies of protein crystals , 2002 .

[68]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[69]  A. Mozzarelli,et al.  T State Hemoglobin Binds Oxygen Noncooperatively with Allosteric Effects of Protons, Inositol Hexaphosphate, and Chloride* , 1997, The Journal of Biological Chemistry.

[70]  A. Mozzarelli,et al.  High and low oxygen affinity conformations of T state hemoglobin , 2001, Protein science : a publication of the Protein Society.

[71]  P. Harris,et al.  Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T6 bovine insulin derivatives , 2013, Acta crystallographica. Section D, Biological crystallography.

[72]  N. Shibayama,et al.  Oxygen equilibrium properties of asymmetric nickel(II)-iron(II) hybrid hemoglobin. , 1993, Biochemistry.

[73]  Andrea Mozzarelli,et al.  Site‐directed mutations of human hemoglobin at residue 35β: A residue at the intersection of the α1β1, α1β2, and α1α2 interfaces , 2001 .

[74]  R. Sweet,et al.  Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS , 2010, Journal of synchrotron radiation.

[75]  R. Hochstrasser,et al.  Electronic spectrum of single crystals of ferricytochrome-c. , 1967, The Journal of chemical physics.

[76]  Antoine Royant,et al.  Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield. , 2009, Biochemistry.

[77]  A Mozzarelli,et al.  Site-directed mutations of human hemoglobin at residue 35beta: a residue at the intersection of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces. , 2001, Protein science : a publication of the Protein Society.

[78]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[79]  M. Paoli,et al.  Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state. , 1997, Journal of molecular biology.

[80]  F. Spyrakis,et al.  The consequences of scoring docked ligand conformations using free energy correlations. , 2007, European journal of medicinal chemistry.

[81]  M. Field,et al.  Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations , 2008, Proceedings of the National Academy of Sciences.

[82]  B. Tropp,et al.  Protein Function , 2018, Definitions.

[83]  M. Paoli,et al.  Crystal structure of T state haemoglobin with oxygen bound at all four haems. , 1996, Journal of molecular biology.

[84]  A. Mozzarelli,et al.  Cooperative Oxygen Binding to Scapharca inaequivalvis Hemoglobin in the Crystal (*) , 1996, The Journal of Biological Chemistry.

[85]  E. Garman,et al.  Radiation damage to biological macromolecules: some answers and more questions. , 2013, Journal of synchrotron radiation.

[86]  D. Metzler,et al.  Correlation of polarized absorption spectroscopic and X-ray diffraction studies of crystalline cytosolic aspartate aminotransferase of pig hearts. , 1988, Journal of molecular biology.

[87]  D. Bourgeois,et al.  Raman-assisted crystallography of biomolecules at the synchrotron: instrumentation, methods and applications. , 2011, Biochimica et biophysica acta.

[88]  A. Mozzarelli,et al.  Microspectrophotometric studies on single crystals of the tryptophan synthase alpha 2 beta 2 complex demonstrate formation of enzyme-substrate intermediates. , 1989, The Journal of biological chemistry.

[89]  E. Round,et al.  Low-dose X-ray radiation induces structural alterations in proteins. , 2014, Acta crystallographica. Section D, Biological crystallography.

[90]  M. Karplus,et al.  Unsuspected pathway of the allosteric transition in hemoglobin , 2011, Proceedings of the National Academy of Sciences.

[91]  J. Hofrichter,et al.  Linear dichroism of biological chromophores. , 1976, Annual review of biophysics and bioengineering.

[92]  R. Sweet,et al.  Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C , 2011, Journal of synchrotron radiation.

[93]  A. Mozzarelli,et al.  Hemoglobin, an "evergreen" red protein. , 2009, Biochimica et biophysica acta.

[94]  W. Wooster,et al.  Crystal structure of , 2005 .

[95]  H. Kowarzyk Structure and Function. , 1910, Nature.

[96]  H. Carlson Protein flexibility and drug design: how to hit a moving target. , 2002, Current opinion in chemical biology.

[97]  K. Moffat Time-resolved macromolecular crystallography , 1996 .

[98]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[99]  Vladimir I Martynov,et al.  GFP family: structural insights into spectral tuning. , 2008, Chemistry & biology.

[100]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[101]  A. Mozzarelli,et al.  Exploring the pyridoxal 5'-phosphate-dependent enzymes. , 2006, Chemical record.

[102]  A. Mozzarelli,et al.  Effect of chloride on oxygen binding to crystals of hemoglobin Rothschild (beta 37 Trp-->Arg) in the T quaternary structure. , 1993, Biochemistry.

[103]  V. Adam,et al.  Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. , 2009, Journal of the American Chemical Society.

[104]  Andrea Mozzarelli,et al.  Oxygen binding to heme proteins in solution, encapsulated in silica gels, and in the crystalline state. , 2008, Methods in enzymology.

[105]  W. Eaton,et al.  New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Pietro Cozzini,et al.  Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. , 2006, Journal of molecular biology.

[107]  E. Garman,et al.  To scavenge or not to scavenge, that is STILL the question , 2012, Journal of synchrotron radiation.

[108]  R. Henning,et al.  Kinetic modeling of the X-ray-induced damage to a metalloprotein. , 2013, The journal of physical chemistry. B.

[109]  A. Mozzarelli,et al.  Correlation of protein functional properties in the crystal and in solution: The case study of T‐state hemoglobin , 2002, Protein science : a publication of the Protein Society.

[110]  S. Antonyuk,et al.  Monitoring and validating active site redox states in protein crystals. , 2011, Biochimica et biophysica acta.

[111]  A. Mozzarelli,et al.  X-ray crystallography marries spectroscopy to unveil structure and function of biological macromolecules. , 2011, Biochimica et biophysica acta.

[112]  R. Ravelli,et al.  Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection? , 2006, Acta crystallographica. Section D, Biological crystallography.

[113]  D. Bourgeois,et al.  Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima. , 2009, Journal of the American Chemical Society.

[114]  A. Mozzarelli,et al.  Trapping Hemoglobin in Rigid Matrices: Fine Tuning of Oxygen Binding Properties by Modulation of Encapsulation Protocols , 2007, Artificial cells, blood substitutes, and immobilization biotechnology.

[115]  R Y Tsien,et al.  Understanding, improving and using green fluorescent proteins. , 1995, Trends in biochemical sciences.

[116]  Kiyohiro Imai,et al.  Global Allostery Model of Hemoglobin , 2002, The Journal of Biological Chemistry.

[117]  E. Henry,et al.  Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals , 1997, Protein science : a publication of the Protein Society.

[118]  L. Sluyterman,et al.  The activity of papain in the crystalline state. , 1969, Biochimica et biophysica acta.

[119]  R. Ravelli,et al.  Infrared protein crystallography. , 2011, Biochimica et biophysica acta.

[120]  M. J. Ellis,et al.  On-line optical and X-ray spectroscopies with crystallography: an integrated approach for determining metalloprotein structures in functionally well defined states. , 2008, Journal of synchrotron radiation.

[121]  C. Poyart,et al.  An estimation of the first binding constant of O2 to human hemoglobin A. , 1978, European journal of biochemistry.

[122]  J. Klinman,et al.  Structural Snapshots from the Oxidative Half-reaction of a Copper Amine Oxidase , 2013, The Journal of Biological Chemistry.

[123]  M G Rossmann,et al.  Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. , 1977, The Journal of biological chemistry.

[124]  S. Boxer,et al.  Polarized absorption spectra of green fluorescent protein single crystals: transition dipole moment directions. , 2003, Biochemistry.

[125]  J. Hajdu,et al.  On the photochemical release of phosphate from 3,5-dinitrophenyl phosphate in a protein crystal. , 1994, Journal of molecular biology.

[126]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[127]  A. Mozzarelli,et al.  Ormosil gels doped with engineered catechol 1,2 dioxygenases for chlorocatechol bioremediation , 2014, Biotechnology and applied biochemistry.

[128]  A. Mozzarelli,et al.  Protein crystal microspectrophotometry. , 2011, Biochimica et biophysica acta.

[129]  E. M. Jones,et al.  Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study. , 2012, Journal of the American Chemical Society.

[131]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[132]  E. Karasik,et al.  Functional and spectroscopic characterization of half-liganded iron-zinc hybrid hemoglobin: evidence for conformational plasticity within the T state. , 2003, Biochemistry.

[133]  A. Mozzarelli,et al.  Functional characterization of heme proteins encapsulated in wet nanoporous silica gels. , 2001, Journal of Nanoscience and Nanotechnology.

[134]  Anna Marabotti,et al.  Energy‐based prediction of amino acid‐nucleotide base recognition , 2008, J. Comput. Chem..

[135]  A. Mozzarelli,et al.  Protein isomerization in the NAD+-dependent activation of beta-(2-furyl)acryloyl-glyceraldehyde-3-phosphate dehydrogenase in the crystal. , 1982, The Journal of biological chemistry.

[136]  E. Henry,et al.  Oxygen binding by single crystals of hemoglobin. , 1993, Biochemistry.

[137]  R. Liddington,et al.  Bonding of molecular oxygen to T state human haemoglobin , 1984, Nature.

[138]  Pietro Cozzini,et al.  Computational titration analysis of a multiprotic HIV-1 protease-ligand complex. , 2004, Journal of the American Chemical Society.

[139]  A. Mozzarelli,et al.  Functional Properties of the Active Core of Human Cystathionine β-Synthase Crystals* , 2001, The Journal of Biological Chemistry.

[140]  M. Marden,et al.  Effectors of hemoglobin. Separation of allosteric and affinity factors. , 1990, Biophysical journal.

[141]  R. Owen,et al.  X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection. , 2012, Acta crystallographica. Section D, Biological crystallography.

[142]  A. Mozzarelli,et al.  Protein function in the crystal. , 1996, Annual review of biophysics and biomolecular structure.

[143]  G. H. Coombs,et al.  Trifluoromethionine, a Prodrug Designed against Methionine γ-Lyase-Containing Pathogens, Has Efficacy In Vitro and In Vivo against Trichomonas vaginalis , 2001, Antimicrobial Agents and Chemotherapy.

[144]  D. Bourgeois,et al.  Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy , 2007 .

[145]  A. Mozzarelli,et al.  Microspectrophotometric measurements on single crystals of mitochondrial serine hydroxymethyltransferase. , 1981, Journal of Biological Chemistry.

[146]  Pietro Cozzini,et al.  Targeting Cystalysin, a Virulence Factor of Treponema denticola‐Supported Periodontitis , 2014, ChemMedChem.

[147]  A. Pacheco,et al.  Interaction of Nitric Oxide with Catalase: Structural and Kinetic Analysis , 2011, Biochemistry.

[148]  I. Schlichting,et al.  Trapping intermediates in the crystal: ligand binding to myoglobin. , 2000, Current opinion in structural biology.

[149]  E. M. Jones,et al.  Differential Control of Heme Reactivity in Alpha and Beta Subunits of Hemoglobin: A Combined Raman Spectroscopic and Computational Study , 2014, Journal of the American Chemical Society.

[150]  O. Shimomura,et al.  Fluorescence polarization of green fluorescence protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[151]  A. Mozzarelli,et al.  Catalytic competence of O-acetylserine sulfhydrylase in the crystal probed by polarized absorption microspectrophotometry. , 1998, Journal of molecular biology.