Regularity at the Boundary for Solutions of Nonlinear Subelliptic Equations
暂无分享,去创建一个
[1] Wolfhard Hansen,et al. The Dirichlet problem for sublaplacians on nilpotent Lie groups —Geometric criteria for regularity , 1987 .
[2] P. Pansu,et al. Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .
[3] Carlos E. Kenig,et al. Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .
[4] A. Sánchez-Calle. Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .
[5] J. Heinonen,et al. Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .
[6] T. Bagby,et al. Quasi topologies and rational approximation , 1972 .
[7] W. Ziemer,et al. A regularity condition at the boundary for solutions of quasilinear elliptic equations , 1977 .
[8] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[9] A. Korányi,et al. Foundations for the Theory of Quasiconformal Mappings on the Heisenberg Group , 1995 .
[10] Luca Capogna,et al. The geometric Sobolev embedding for vector fields and the isoperimetric inequality , 1994 .
[11] G. Citti,et al. HARNACK'S INEQUALITY FOR SUM OF SQUARES OF VECTOR FIELDS PLUS A POTENTIAL , 1993 .
[12] E. Stein,et al. Balls and metrics defined by vector fields I: Basic properties , 1985 .
[13] Luca Capogna,et al. An embedding theorem and the harnack inequality for nonlinear subelliptic equations , 1993 .