Fractal geometry of ecological habitats

The aims of this chapter are two. The first is to discuss some ways in which habitats may be fractal. The second is to discuss some ecological consequences of fractals and fractal-like phenomena. As a corollary to this second aim, it will also be necessary to discuss the phenomenon of reddened spectra of environmental heterogeneity, and its relation to fractals.

[1]  J. Lawton,et al.  Fractal dimension of vegetation and the distribution of arthropod body lengths , 1985, Nature.

[2]  J. T.R. Sharrock,et al.  The Atlas of Breeding Birds in Britain and Ireland , 1980 .

[3]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[4]  J. Yorke,et al.  Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics , 1987, Science.

[5]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[6]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[7]  J. Lawton,et al.  The effects of host‐plant distribution and local abundance on the species richness of agromyzid flies attacking British umbellifers , 1982 .

[8]  D Morse Fractals in ecology : The effect of the fractal dimension of trees on the body length distribution of arboreal arthropods. , 1988 .

[9]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[10]  Benoit B. Mandelbrot,et al.  Les objets fractals : forme, hasard et dimension , 1989 .

[11]  R. Sayles,et al.  Surface topography as a nonstationary random process , 1978, Nature.

[12]  J. Thomas,et al.  Atlas of Butterflies in Britain and Ireland , 1984 .

[13]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[14]  J. Sepkoski,et al.  On the relationship between Phanerozoic diversity and changes in habitable area , 1978, Paleobiology.

[15]  P. Legendre,et al.  Developments in Numerical Ecology , 1988 .

[16]  Topography of random surfaces (reply) , 1978, Nature.

[17]  Earl D. McCoy,et al.  The Statistics and Biology of the Species-Area Relationship , 1979, The American Naturalist.

[18]  R. W. Hiorns,et al.  The mathematical theory of the dynamics of biological populations : based on a conference organised by the Institute of Mathematics and Its Applications in association with the Institute of Biology , 1975 .

[19]  David G. Green,et al.  Fractals in ecology: methods and interpretation , 1984 .

[20]  S. Weiss,et al.  Fractal geometry and caterpillar dispersal: or how many inches can inchworms inch? , 1988 .

[21]  R. O. Erickson The Clematis fremontii Var. Riehlii Population in the Ozarks , 1945 .

[22]  G. Ledyard Stebbins,et al.  Variation and Evolution in Plants , 1951 .

[23]  Stephen Wilson,et al.  The Beauty of Fractals: Images of Complex Dynamical Systems by Heinz Otto Peitgen, Peter Richter (review) , 2017 .

[24]  N. Stork,et al.  Species number, species abundance and body length relationships of arboreal beetles in Bornean lowland rain forest trees , 1988 .

[25]  J. Hannay,et al.  Topography of random surfaces , 1978, Nature.

[26]  B. D. Coleman On random placement and species-area relations , 1981 .

[27]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[28]  M. Williamson,et al.  Relationship of species number to area, distance and other variables , 1988 .

[29]  Paul F. Fougere,et al.  On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: Simulation studies and application to geophysical data , 1985 .

[30]  Serge Frontier,et al.  Applications of Fractal Theory to Ecology , 1987 .

[31]  R. Daniel Mauldin,et al.  The exact Hausdorff dimension in random recursive constructions , 1988 .

[32]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .