High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles

Growing market demand for portable energy storage has triggered significant research on high‐capacity lithium‐ion (Li‐ion) battery anodes. Various elements have been utilized in innovative structures to enable these anodes, which can potentially increase the energy density and decrease the cost of Li‐ion batteries. In this review, electrode and material parameters are considered in anode fabrication. The periodic table is then used to explore how the choice of anode material affects rate performance, cycle stability, Li‐ion insertion/extraction potentials, voltage hysteresis, volumetric and specific capacities, and other critical parameters. Silicon (Si), germanium (Ge), and tin (Sn) anodes receive more attention in literature and in this review, but other elements, such as antimony (Sb), lead (Pb), magnesium (Mg), aluminum (Al), gallium (Ga), phosphorus (P), arsenic (As), bismuth (Bi), and zinc (Zn) are also discussed. Among conversion anodes focus is placed on oxides, nitrides, phosphides, and hydrides. Nanostructured carbon (C) receives separate consideration. Issues in high‐ capacity research, such as volume change, insufficient coulombic efficiency, and solid electrolyte interphase (SEI) layer stability are elucidated. Finally, advanced carbon composites utilizing carbon nanotubes (CNT), graphene, and size preserving external shells are discussed, including high mass loading (thick) electrodes and electrodes capable of providing load‐bearing properties.

[1]  Jaephil Cho,et al.  Critical Thickness of SiO2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li‐Ion Batteries , 2013, Advanced materials.

[2]  P. Lippens,et al.  Quantitative Analysis of the Initial Restructuring Step of Nanostructured FeSn2-Based Anodes for Li-Ion Batteries , 2013 .

[3]  Xinliang Feng,et al.  Graphene: a two-dimensional platform for lithium storage. , 2013, Small.

[4]  J. Jumas,et al.  Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .

[5]  Z. Fu,et al.  Nanocrystalline CoP thin film as a new anode material for lithium ion battery , 2013 .

[6]  Jang Wook Choi,et al.  Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. , 2013, Nano letters.

[7]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[8]  S. Belin,et al.  XAS investigations on nanocrystalline Mg2FeH6 used as a negative electrode of Li-ion batteries , 2013 .

[9]  J. Cabana,et al.  Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. , 2013, Nano letters.

[10]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[11]  M. L. Focarete,et al.  High-performance Sn@carbon nanocomposite anode for lithium batteries , 2013 .

[12]  Justin T. Harris,et al.  Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes. , 2013, ACS nano.

[13]  Chunhai Jiang,et al.  Nanoengineering Titania for High Rate Lithium Storage: A Review , 2013 .

[14]  Y. S. Yun,et al.  Applications of Carbon Nanotubes for Lithium Ion Battery Anodes , 2013, Materials.

[15]  Fei Zhao,et al.  Super‐Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries , 2013 .

[16]  Seung M. Oh,et al.  Si‐Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium‐Ion Batteries , 2013 .

[17]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[18]  W. Xi,et al.  Highly Conductive and Strain‐Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithium‐Ion‐Storage Capability , 2013, Advanced materials.

[19]  S. Kuksenko Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters , 2013, Russian Journal of Electrochemistry.

[20]  C. Jo,et al.  One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. , 2013, ACS nano.

[21]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[22]  Guo Hong,et al.  Germanium–graphene composite anode for high-energy lithium batteries with long cycle life , 2013 .

[23]  G. Cui,et al.  An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries , 2013 .

[24]  W. Choi,et al.  Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future , 2013 .

[25]  E. Bertagnolli,et al.  Anisotropic lithiation behavior of crystalline silicon , 2012, Nanotechnology.

[26]  C. Grey,et al.  Role of Structure and Interfaces in the Performance of TiSnSb as an Electrode for Li-Ion Batteries , 2012 .

[27]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[28]  Rui-jun Ma,et al.  Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries. , 2012, The journal of physical chemistry letters.

[29]  Jian Yu Huang,et al.  Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO(2) nanowires. , 2012, Micron.

[30]  Fei Wei,et al.  Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. , 2012, ACS nano.

[31]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[32]  Jim Benson,et al.  Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. , 2012, ACS nano.

[33]  J. Tu,et al.  MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance , 2012 .

[34]  Hsing-Yu Tuan,et al.  Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. , 2012, ACS nano.

[35]  L. Monconduit,et al.  Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism , 2012 .

[36]  I. Baraille,et al.  First principles calculations of solid–solid interfaces: an application to conversion materials for lithium-ion batteries , 2012 .

[37]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[38]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[39]  S. Mao,et al.  Controllable Synthesis of a Monophase Nickel Phosphide/Carbon (Ni5P4/C) Composite Electrode via Wet‐Chemistry and a Solid‐State Reaction for the Anode in Lithium Secondary Batteries , 2012 .

[40]  G. Rao,et al.  Synthesis and Li-storage behavior of CrN nanoparticles , 2012 .

[41]  Don-Hyung Ha,et al.  Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black. , 2012, Nano letters.

[42]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[43]  B. Korgel,et al.  Solution-grown germanium nanowire anodes for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[44]  Meng Gu,et al.  In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. , 2012, ACS nano.

[45]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[46]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[47]  Jiangfeng Qian,et al.  Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. , 2012, Chemical communications.

[48]  G. Rao,et al.  Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries , 2012 .

[49]  Liang Li,et al.  N‐Doped Graphene‐SnO2 Sandwich Paper for High‐Performance Lithium‐Ion Batteries , 2012 .

[50]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[51]  Ting Zhu,et al.  In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures , 2012 .

[52]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[53]  Yi Cui,et al.  Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings , 2012 .

[54]  Dong‐Wan Kim,et al.  A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries. , 2012, Chemical communications.

[55]  Cheol‐Min Park,et al.  Nanostructured Zn-based composite anodes for rechargeable Li-ion batteries , 2012 .

[56]  Jean-Pierre Pereira-Ramos,et al.  High‐Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li‐Ion Batteries , 2012, Advanced materials.

[57]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[58]  Wen‐Cui Li,et al.  Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume , 2012 .

[59]  J. Tu,et al.  NiO–graphene hybrid as an anode material for lithium ion batteries , 2012 .

[60]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[61]  Doron Aurbach,et al.  Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[62]  S. Mao,et al.  Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation: a new class of nanowires with exceptionally improved electrochemical performance as a negative electrode , 2012 .

[63]  T. Kyotani,et al.  Effect of Buffer Size around Nanosilicon Anode Particles for Lithium-Ion Batteries , 2012 .

[64]  Jun Liu,et al.  Thermodynamics and Kinetics of the Li/FeF3 Reaction by Electrochemical Analysis , 2012 .

[65]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[66]  Fredrik J. Lindgren,et al.  Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy , 2012 .

[67]  Chunsheng Wang,et al.  Interdispersed Amorphous MnOx–Carbon Nanocomposites with Superior Electrochemical Performance as Lithium‐Storage Material , 2012 .

[68]  M. Verbrugge,et al.  Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction , 2012 .

[69]  Yu‐Guo Guo,et al.  Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. , 2012, Journal of the American Chemical Society.

[70]  Alexander Kvit,et al.  Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. , 2012, ACS nano.

[71]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[72]  Qian Sun,et al.  Mn3N2 as a novel negative electrode material for rechargeable lithium batteries , 2012 .

[73]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[74]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[75]  Jun Liu,et al.  In Situ Generation of Few‐Layer Graphene Coatings on SnO2‐SiC Core‐Shell Nanoparticles for High‐Performance Lithium‐Ion Storage , 2012 .

[76]  N. Hudak,et al.  Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium , 2012 .

[77]  M. Verbrugge,et al.  Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes , 2012 .

[78]  Jaephil Cho,et al.  Li Reaction Mechanism of MnP Nanoparticles , 2012 .

[79]  E. Kaxiras,et al.  Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries , 2012 .

[80]  H. S. Lee,et al.  Electrochemical investigation of Li–Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6 , 2011 .

[81]  M. Wohlfahrt‐Mehrens,et al.  Low temperature behaviour of TiO 2 rutile as negative electrode material for lithium-ion batteries , 2011 .

[82]  S. Mao,et al.  Improved Electrochemical Performance of Self-Assembled Hierarchical Nanostructured Nickel Phosphide as a Negative Electrode for Lithium Ion Batteries , 2011 .

[83]  S. Mao,et al.  In situ growth and electrochemical characterization versuslithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy , 2011 .

[84]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[85]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[86]  Meilin Liu,et al.  Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. , 2011, Angewandte Chemie.

[87]  N. Chen,et al.  A novel FeAs anode material for lithium ion battery , 2011 .

[88]  Yang Liu,et al.  In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. , 2011, Nano letters.

[89]  S. T. Picraux,et al.  Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. , 2011, Nano letters.

[90]  Wonbong Choi,et al.  Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries , 2011 .

[91]  Liquan Chen,et al.  Investigation on porous MnO microsphere anode for lithium ion batteries , 2011 .

[92]  Mark W. Verbrugge,et al.  Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries , 2011 .

[93]  W. Carter,et al.  High-strength all-solid lithium ion electrodes based on Li 4Ti 5O 12 , 2011 .

[94]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[95]  Akinori Kita,et al.  Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes , 2011 .

[96]  G. Yushin,et al.  Nanosilicon‐Coated Graphene Granules as Anodes for Li‐Ion Batteries , 2011 .

[97]  Marie-Liesse Doublet,et al.  Interface electrochemistry in conversion materials for Li-ion batteries , 2011 .

[98]  D. Gregory,et al.  Ternary and higher pnictides; prospects for new materials and applications. , 2011, Chemical Society reviews.

[99]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[100]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[101]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[102]  P. Moreau,et al.  The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries , 2011 .

[103]  Ji‐Guang Zhang,et al.  In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO₂ nanowire during lithium intercalation. , 2011, Nano letters.

[104]  F. Favier,et al.  Activated-phosphorus as new electrode material for Li-ion batteries , 2011 .

[105]  T. Zhu,et al.  Atomistic mechanisms of lithium insertion in amorphous silicon , 2011 .

[106]  Christoph Stangl,et al.  High capacity graphite-silicon composite anode material for lithium-ion batteries , 2011 .

[107]  Xingcheng Xiao,et al.  Thickness effects on the lithiation of amorphous silicon thin films , 2011 .

[108]  Jaephil Cho,et al.  High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries , 2011 .

[109]  Cheol‐Min Park,et al.  Porous structured SnSb/C nanocomposites for Li-ion battery anodes. , 2011, Chemical communications.

[110]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[111]  Jiangfeng Qian,et al.  Pb-sandwiched nanoparticles as anode material for lithium-ion batteries , 2011, Journal of Solid State Electrochemistry.

[112]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[113]  Seung M. Oh,et al.  Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries , 2010 .

[114]  N. Imanishi,et al.  Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique , 2010 .

[115]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[116]  Rajeswari Chandrasekaran,et al.  Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature , 2010 .

[117]  Sylvie Grugeon,et al.  Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries , 2010 .

[118]  Ping Chen,et al.  Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N , 2010 .

[119]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[120]  Li Lu,et al.  Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries , 2010 .

[121]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[122]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[123]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[124]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[125]  N. Imanishi,et al.  Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes , 2010 .

[126]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[127]  Anton Van der Ven,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[128]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[129]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[130]  Cheol‐Min Park,et al.  Quasi‐Intercalation and Facile Amorphization in Layered ZnSb for Li‐Ion Batteries , 2010, Advanced materials.

[131]  Daniel J. Inman,et al.  Multifunctional self-charging structures using piezoceramics and thin-film batteries , 2010 .

[132]  S. Boyanov,et al.  Comparison of the Electrochemical Lithiation/Delitiation Mechanisms of FePx (x = 1, 2, 4) Based Electrodes in Li-Ion Batteries , 2009 .

[133]  Young‐Jun Kim,et al.  Lithia formation mechanism in tin oxide anodes for lithium–ion rechargeable batteries , 2009 .

[134]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[135]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[136]  Cheol‐Min Park,et al.  Electrochemical Behaviors and Reaction Mechanism of Nanosilver with Lithium , 2009 .

[137]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[138]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[139]  J. Tarascon,et al.  High temperature lithium cells using conversion oxide electrodes , 2009 .

[140]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[141]  L. Archer,et al.  One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties , 2009 .

[142]  Y. Cao,et al.  In situ synthesis of a CoSb3/nano-carbon-web anode for Li-ion batteries , 2009 .

[143]  Liquan Chen,et al.  Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential , 2009 .

[144]  G. Yin,et al.  PbO@C core–shell nanocomposites as an anode material of lithium-ion batteries , 2009 .

[145]  C. Villevieille,et al.  A new ternary Li4FeSb2 structure formed upon discharge of the FeSb2/Li cell , 2009 .

[146]  Elena Sherman,et al.  Design and fabrication of multifunctional structural batteries , 2009 .

[147]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[148]  Phl Peter Notten,et al.  Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study , 2009 .

[149]  S. Boyanov,et al.  P-Redox Mechanism at the Origin of the High Lithium Storage in NiP2-Based Batteries , 2009 .

[150]  G. Sumanasekera,et al.  Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. , 2009, Nano letters.

[151]  Cheol‐Min Park,et al.  Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries , 2009 .

[152]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[153]  Dongmin Im,et al.  Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries , 2008 .

[154]  Qian Sun,et al.  Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries , 2008 .

[155]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[156]  V. Boldyrev,et al.  Interaction between copper and gallium , 2008 .

[157]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[158]  Kristin A. Persson,et al.  First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium , 2008 .

[159]  H. Mimura,et al.  One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition , 2008 .

[160]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[161]  Cheol‐Min Park,et al.  Novel Antimony/Aluminum/Carbon Nanocomposite for High-Performance Rechargeable Lithium Batteries , 2008 .

[162]  Cheol‐Min Park,et al.  Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries , 2008 .

[163]  Seung M. Oh,et al.  Liquid Gallium Electrode Confined in Porous Carbon Matrix as Anode for Lithium Secondary Batteries , 2008 .

[164]  R. Salot,et al.  Study of Germanium as Electrode in Thin-Film Battery , 2008 .

[165]  J. Pereira‐Ramos,et al.  Layered lithium cobalt nitrides: A new class of lithium intercalation compounds , 2008 .

[166]  Seung M. Oh,et al.  Role of Electrochemically Driven Cu Nanograins in CuGa2 Electrode , 2008 .

[167]  D. Gregory Lithium nitrides as sustainable energy materials. , 2008, Chemical record.

[168]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[169]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[170]  Jing-ying Xie,et al.  Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries , 2007 .

[171]  N. Choi,et al.  Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte , 2007 .

[172]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[173]  Yet-Ming Chiang,et al.  Spatially Resolved Modeling of Microstructurally Complex Battery Architectures , 2007 .

[174]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[175]  J. Tarascon,et al.  In situ measurements of Li ion battery electrode material conductivity : Application to LixCoO2 and conversion reactions , 2007 .

[176]  K. Edström,et al.  Influence of electrode microstructure on the reactivity of Cu2Sb with lithium , 2007 .

[177]  Doron Aurbach,et al.  Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes , 2007 .

[178]  Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4: X-ray Absorption Spectroscopic Study , 2007 .

[179]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[180]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[181]  C. Ionica-Bousquet,et al.  In situ 119Sn Mössbauer Effect Study of Li−CoSn2 Electrochemical System , 2006 .

[182]  M. Lain,et al.  A prelithiated carbon anode for lithium-ion battery applications , 2006 .

[183]  C. Pérez-Vicente,et al.  On the Mechanism of the Electrochemical Reaction of Tin Phosphide with Lithium , 2006 .

[184]  Min Gyu Kim,et al.  Electrochemical Characteristics of Ti–P Composites Prepared by Mechanochemical Synthesis , 2006 .

[185]  D. Wexler,et al.  Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries , 2006 .

[186]  Cheol‐Min Park,et al.  Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries , 2006 .

[187]  S. Matsuta,et al.  Study on Sn–Co Alloy Anodes for Lithium Secondary Batteries I. Amorphous System , 2006 .

[188]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[189]  J. Tarascon,et al.  FeP: Another Attractive Anode for the Li-Ion Battery Enlisting a Reversible Two-Step Insertion/Conversion Process , 2006 .

[190]  Yadong Li,et al.  Oxides@C core-shell nanostructures : One-pot synthesis, rational conversion, and Li storage property , 2006 .

[191]  J. Read,et al.  Chemistry and Structure of Sony's Nexelion Li-ion Electrode Materials , 2006 .

[192]  L. Monconduit,et al.  Redox mechanism in the binary transition metal phosphide Cu3P , 2006 .

[193]  D. Wexler,et al.  Spray pyrolyzed PbO-Carbon nanocomposites as anode for lithium-ion batteries , 2006 .

[194]  Marie-Liesse Doublet,et al.  Electrochemical Behaviors of Binary and Ternary Manganese Phosphides , 2005 .

[195]  Jaephil Cho,et al.  Surface-stabilized amorphous germanium nanoparticles for lithium-storage material. , 2005, The journal of physical chemistry. B.

[196]  J. Cabana,et al.  Ex situ nmr and neutron diffraction study of structure and lithium motion in Li7MnN4 , 2005 .

[197]  T. Takamura,et al.  Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode , 2005 .

[198]  P. Lippens,et al.  Study of Li insertion mechanisms in transition metal antimony compounds as negative electrodes for Li-ion battery , 2005 .

[199]  Young-Ugk Kim,et al.  The reaction mechanism of lithium insertion in vanadium tetraphosphide : A possible anode material in lithium-ion batteries , 2005 .

[200]  D. Aurbach,et al.  Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes , 2005 .

[201]  J. Tarascon,et al.  On the Reactivity of Li8-yMnyP4 toward Lithium , 2005 .

[202]  Muhammad A. Qidwai,et al.  The design and application of multifunctional structure-battery materials systems , 2005 .

[203]  J. Tarascon,et al.  Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li , 2005 .

[204]  F. Favier,et al.  Electrochemical Reactivity of Cu3 P with Lithium , 2004 .

[205]  Diana Golodnitsky,et al.  Effect of carbon substrate on SEI composition and morphology , 2004 .

[206]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[207]  D. Billaud,et al.  Electrochemical Insertion of Lithium into Graphite–Zinc Composites , 2004 .

[208]  L. Nazar,et al.  Facile Reversible Displacement Reaction of Cu3 P with Lithium at Low Potential , 2004 .

[209]  N. Imanishi,et al.  Lithium transition metal nitrides with the modified morphology characteristics as advanced anode materials for lithium ion batteries , 2004 .

[210]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[211]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[212]  Z. Fu,et al.  Electrochemical reaction of nanocrystalline Co3O4 thin film with Lithium , 2004 .

[213]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[214]  C. C. Ahn,et al.  Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities , 2004 .

[215]  G. Petkova,et al.  Nanostructured Lead Dioxide Thin Electrode , 2004 .

[216]  Ying Wang,et al.  Electrochemical Reactivity Mechanism of Ni3 N with Lithium , 2004 .

[217]  D. Gregory,et al.  Fast lithium ion diffusion in the ternary layered nitridometalate LiNiN. , 2004, Journal of the American Chemical Society.

[218]  M. Morcrette,et al.  Redox-Induced Structural Change in Anode Materials Based on Tetrahedral (MPn4)x- Transition Metal Pnictides , 2004 .

[219]  Ying Wang,et al.  Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes , 2004 .

[220]  L. Nazar,et al.  Crystal Structure and Electrochemical Behavior of Li2CuP: a Surprising Reversible Crystalline−Amorphous Transformation , 2003 .

[221]  Young-woon Kim,et al.  Tin-Based Oxides as Anode Materials for Lithium Secondary Batteries , 2003 .

[222]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[223]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[224]  J. Richardson,et al.  X-ray and neutron diffraction studies on "Li4.4Sn". , 2003, Inorganic chemistry.

[225]  Jing-ying Xie,et al.  Electrochemical studies of ternary and quadruple lithium metal nitrides synthesized by ballmilling , 2003 .

[226]  J. Morales,et al.  Lead-based systems as suitable anode materials for Li-ion batteries , 2003 .

[227]  Jean-Marie Tarascon,et al.  Effect of Particle Size on Lithium Intercalation into α ­ Fe2 O 3 , 2003 .

[228]  Jun Yang,et al.  Ballmilling Synthesis and Electrochemical Characterization of Ternary Lithium Nitrides , 2003 .

[229]  L. Monconduit,et al.  The LixVPn4 Ternary Phases (Pn = P, As): Rigid Networks for Lithium Intercalation/Deintercalation , 2002 .

[230]  Ying Wang,et al.  A Nanocrystalline NiO Thin-Film Electrode Prepared by Pulsed Laser Ablation for Li-Ion Batteries , 2002 .

[231]  L. Nazar,et al.  A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry , 2002, Science.

[232]  K. Edström,et al.  Structural Transformations in Lithiated η′-Cu6Sn5 Electrodes Probed by In Situ Mössbauer Spectroscopy and X-Ray Diffraction , 2002 .

[233]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[234]  J. Tarascon,et al.  The Electrochemical Reduction of Co3 O 4 in a Lithium Cell , 2002 .

[235]  G. Amatucci,et al.  The Electrochemistry of Zn3 N 2 and LiZnN A Lithium Reaction Mechanism for Metal Nitride Electrodes , 2002 .

[236]  I. Uchida,et al.  Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte , 2002 .

[237]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[238]  Chien H. Wu The role of Eshelby stress in composition-generated and stress-assisted diffusion , 2001 .

[239]  T. Brousse,et al.  Aluminum negative electrode in lithium ion batteries , 2001 .

[240]  F. Martín,et al.  Electrochemical properties of lead oxide films obtained by spray pyrolysis as negative electrodes for lithium secondary batteries , 2001 .

[241]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[242]  Y. Mineo,et al.  Solid 7Li-NMR and in situ XRD studies of the insertion reaction of lithium with tin oxide and tin-based amorphous composite oxide , 2001 .

[243]  Sylvie Grugeon,et al.  Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .

[244]  X. Zhao,et al.  Electrochemical properties of some Sb or Te based alloys for candidate anode materials of lithium-ion batteries , 2001 .

[245]  Meilin Liu,et al.  Electrochemical properties of Li-Mg alloy electrodes for lithium batteries , 2001 .

[246]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[247]  N. Imanishi,et al.  Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode , 2000 .

[248]  W. Behl,et al.  Experimental confirmation of the model for microcracking during lithium charging in single-phase alloys , 2000 .

[249]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[250]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[251]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[252]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[253]  Jeff Dahn,et al.  On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium , 1999 .

[254]  Zhong Shi Electrochemical Properties of Li ‐ Zn Alloy Electrodes Prepared by Kinetically Controlled Vapor Deposition for Lithium Batteries , 1999 .

[255]  J. Dahn,et al.  Ab initio calculation of the lithium-tin voltage profile , 1998 .

[256]  T. Shodai,et al.  Anode performance of a new layered nitride Li3 − xCoxN (x = 0.2–0.6) , 1997 .

[257]  J. Dahn,et al.  Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass , 1997 .

[258]  Doron Aurbach,et al.  Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes , 1997 .

[259]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[260]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[261]  J. Dahn,et al.  Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons , 1997 .

[262]  Takahisa Shodai,et al.  Study of Li3 − xMxN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells , 1996 .

[263]  S. Kondo,et al.  Synthesis and electrochemical studies of a new anode material, Li3 − xCoxN , 1996 .

[264]  Diana Golodnitsky,et al.  The sei model—application to lithium-polymer electrolyte batteries , 1995 .

[265]  N. Kumagai,et al.  Electrochemical investigation of the diffusion of lithium in β-LiAl alloy at room temperature , 1992 .

[266]  H. Baker,et al.  Alloy phase diagrams , 1992 .

[267]  R. Huggins Solid State Ionics , 1989 .

[268]  C. Tuck,et al.  Lithium electrodes based upon aluminium and alloy substrates. I: Impedance measurements on aluminium , 1989 .

[269]  G. Nazri Preparation, Characterization and Conductivity of Li 3 N, Li 3 P and Li 3 As , 1988 .

[270]  Robert A. Huggins,et al.  Kinetic and Thermodynamic Parameters of Several Binary Lithium Alloy Negative Electrode Materials at Ambient Temperature , 1987 .

[271]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[272]  A. Pelton,et al.  The Li-Mg (Lithium-Magnesium) system , 1984 .

[273]  T. Jow,et al.  Lithium‐Aluminum Electrodes at Ambient Temperatures , 1982 .

[274]  M. Thackeray,et al.  A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells , 1981 .

[275]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .