Super-resolution microscopy of the synaptic active zone

Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins.

[1]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[2]  B. Sakmann,et al.  Calcium Secretion Coupling at Calyx of Held Governed by Nonuniform Channel–Vesicle Topography , 2002, The Journal of Neuroscience.

[3]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[4]  E. Neher,et al.  Estimation of quantal parameters at the calyx of Held synapse , 2002, Neuroscience Research.

[5]  Thomas Frank,et al.  Concurrent Maturation of Inner Hair Cell Synaptic Ca2+ Influx and Auditory Nerve Spontaneous Activity around Hearing Onset in Mice , 2013, The Journal of Neuroscience.

[6]  Masahiko Watanabe,et al.  Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels , 2013, The Journal of Neuroscience.

[7]  Lu-Yang Wang,et al.  Developmental Transformation of the Release Modality at the Calyx of Held Synapse , 2005, The Journal of Neuroscience.

[8]  Stephan J Sigrist,et al.  Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences , 2013, Nature Neuroscience.

[9]  C. Limbach,et al.  Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site , 2011, Proceedings of the National Academy of Sciences.

[10]  Alain Marty,et al.  Multivesicular Release at Single Functional Synaptic Sites in Cerebellar Stellate and Basket Cells , 1998, The Journal of Neuroscience.

[11]  Lars Meyer,et al.  Dual-color STED microscopy at 30-nm focal-plane resolution. , 2008, Small.

[12]  T. Kuner,et al.  Calcium-channel number critically influences synaptic strength and plasticity at the active zone , 2012, Nature Neuroscience.

[13]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[14]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[15]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[16]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[18]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[19]  A. Egner,et al.  Bassoon and the Synaptic Ribbon Organize Ca2+ Channels and Vesicles to Add Release Sites and Promote Refilling , 2010, Neuron.

[20]  Arne Stoschek,et al.  The architecture of active zone material at the frog's neuromuscular junction , 2001, Nature.

[21]  M. Frotscher,et al.  Nanodomain Coupling between Ca2+ Channels and Ca2+ Sensors Promotes Fast and Efficient Transmitter Release at a Cortical GABAergic Synapse , 2008, Neuron.

[22]  Mike Heilemann,et al.  Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples , 2012, PloS one.

[23]  F. F. De-Miguel,et al.  Regulation of Synaptic Vesicle Docking by Different Classes of Macromolecules in Active Zone Material , 2012, PloS one.

[24]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[25]  Holger Erfle,et al.  Super-Resolution Microscopy , 2017, Methods in Molecular Biology.

[26]  O. Shupliakov,et al.  Two pools of vesicles associated with the presynaptic cytosolic projection in Drosophila neuromuscular junctions. , 2010, Journal of structural biology.

[27]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[28]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[29]  D. Owald,et al.  Assembling the presynaptic active zone , 2009, Current Opinion in Neurobiology.

[30]  Peter Jonas,et al.  Loose Coupling Between Ca2+ Channels and Release Sensors at a Plastic Hippocampal Synapse , 2014, Science.

[31]  Georg Krohne,et al.  Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution , 2014, Journal of Cell Science.

[32]  James A Galbraith,et al.  Super-resolution microscopy at a glance , 2011, Journal of Cell Science.

[33]  C. Govind,et al.  Motor nerve terminals on abdominal muscles in larval flesh flies, Sarcophaga bullata: Comparisons with Drosophila , 1998, The Journal of comparative neurology.

[34]  S. Sigrist,et al.  The Active Zone T-Bar—A Plasticity Module? , 2010, Journal of neurogenetics.

[35]  R. Dobarzić,et al.  [Fluorescence microscopy]. , 1975, Plucne bolesti i tuberkuloza.

[36]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[37]  Paul Greengard,et al.  Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix , 2007, The Journal of Neuroscience.

[38]  P. Jonas,et al.  Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses , 2011, Nature Reviews Neuroscience.

[39]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[40]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[41]  M A Xu-Friedman,et al.  Three-Dimensional Comparison of Ultrastructural Characteristics at Depressing and Facilitating Synapses onto Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[42]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[43]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[44]  M. Dahan,et al.  Quantitative Nanoscopy of Inhibitory Synapses: Counting Gephyrin Molecules and Receptor Binding Sites , 2013, Neuron.

[45]  H. Taschenberger,et al.  The Role of Physiological Afferent Nerve Activity during In Vivo Maturation of the Calyx of Held Synapse , 2007, The Journal of Neuroscience.

[46]  Thomas C. Südhof,et al.  RIM1α is required for presynaptic long-term potentiation , 2002, Nature.

[47]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[48]  Mike Heilemann,et al.  Super-resolution Imaging Reveals the Internal Architecture of Nano-sized Syntaxin Clusters* , 2012, The Journal of Biological Chemistry.

[49]  E. Neher,et al.  Quantitative Analysis of Calcium-Dependent Vesicle Recruitment and Its Functional Role at the Calyx of Held Synapse , 2007, The Journal of Neuroscience.

[50]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[51]  Suliana Manley,et al.  Superresolution imaging using single-molecule localization. , 2010, Annual review of physical chemistry.

[52]  Sebastian van de Linde,et al.  A blueprint for cost-efficient localization microscopy. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  K. Moulder,et al.  Reluctant Vesicles Contribute to the Total Readily Releasable Pool in Glutamatergic Hippocampal Neurons , 2005, The Journal of Neuroscience.

[54]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[55]  E. Isacoff,et al.  Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons , 2011, Nature Neuroscience.

[56]  Sarah Aufmkolk,et al.  High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons , 2014, Front. Cell. Neurosci..

[57]  J. Clements,et al.  Unveiling synaptic plasticity: a new graphical and analytical approach , 2000, Trends in Neurosciences.

[58]  Stephan J. Sigrist,et al.  RIM-Binding Protein, a Central Part of the Active Zone, Is Essential for Neurotransmitter Release , 2011, Science.

[59]  I. Forsythe,et al.  Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. , 1994, The Journal of physiology.

[60]  Uri Ashery,et al.  Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states , 2014, Nature Communications.

[61]  J. Eilers,et al.  Rapid Active Zone Remodeling during Synaptic Plasticity , 2011, The Journal of Neuroscience.

[62]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[63]  Jacob Matz,et al.  Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release , 2010, Proceedings of the National Academy of Sciences.

[64]  R. Eckert,et al.  Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. , 1984, Biophysical journal.

[65]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[66]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[67]  E. Isacoff,et al.  Subunit counting in membrane-bound proteins , 2007, Nature Methods.

[68]  D. Owald,et al.  Naked Dense Bodies Provoke Depression , 2010, The Journal of Neuroscience.

[69]  H. Bellen,et al.  The architecture of the active zone in the presynaptic nerve terminal. , 2004, Physiology.

[70]  E. M. Adler,et al.  The Calcium Signal for Transmitter Secretion from Presynaptic Nerve Terminals a , 1991, Annals of the New York Academy of Sciences.

[71]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[72]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[73]  Yingming Zhao,et al.  The Presynaptic Particle Web Ultrastructure, Composition, Dissolution, and Reconstitution , 2001, Neuron.

[74]  H. Atwood,et al.  Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[76]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[77]  Masahiko Watanabe,et al.  Release probability of hippocampal glutamatergic terminals scales with the size of the active zone , 2012, Nature Neuroscience.

[78]  H. Atwood,et al.  Diversification of synaptic strength: presynaptic elements , 2002, Nature Reviews Neuroscience.

[79]  T. Kuner,et al.  Tissue Multicolor STED Nanoscopy of Presynaptic Proteins in the Calyx of Held , 2013, PloS one.

[80]  E. Neher,et al.  Separation of Presynaptic and Postsynaptic Contributions to Depression by Covariance Analysis of Successive EPSCs at the Calyx of Held Synapse , 2002, The Journal of Neuroscience.

[81]  P. Jonas,et al.  A large pool of releasable vesicles in a cortical glutamatergic synapse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[83]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[84]  Stefan W. Hell,et al.  Protein localization in electron micrographs using fluorescence nanoscopy , 2010, Nature Methods.

[85]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[86]  Michael Krauss,et al.  Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins , 2014, Science.

[87]  Markus Sauer,et al.  Localization microscopy coming of age: from concepts to biological impact , 2013, Journal of Cell Science.

[88]  T. Reese,et al.  The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse , 1988, Neuron.

[89]  D. Owald,et al.  Maturation of active zone assembly by Drosophila Bruchpilot , 2009, The Journal of cell biology.

[90]  E. F. Stanley Single calcium channels and acetylcholine release at a presynaptic nerve terminal , 1993, Neuron.

[91]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[92]  Bert Sakmann,et al.  Three-Dimensional Reconstruction of a Calyx of Held and Its Postsynaptic Principal Neuron in the Medial Nucleus of the Trapezoid Body , 2002, The Journal of Neuroscience.

[93]  R. Tsien,et al.  The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles , 2009, Science.

[94]  R. Habets,et al.  Synaptic PI(3,4,5)P3 Is Required for Syntaxin1A Clustering and Neurotransmitter Release , 2013, Neuron.

[95]  R. Tsien,et al.  Synaptic vesicle pools and dynamics. , 2012, Cold Spring Harbor perspectives in biology.

[96]  C. Sandri,et al.  The fine structure of freeze-fractured presynaptic membranes , 1972, Journal of neurocytology.

[97]  F. Kawasaki,et al.  Active Zone Localization of Presynaptic Calcium Channels Encoded by the cacophony Locus of Drosophila , 2004, The Journal of Neuroscience.

[98]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[99]  J. Eilers,et al.  Nanodomain Coupling at an Excitatory Cortical Synapse , 2013, Current Biology.

[100]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[101]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[102]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[103]  R. Angus Silver,et al.  Sustaining rapid vesicular release at active zones: potential roles for vesicle tethering , 2013, Trends in Neurosciences.

[104]  Harald F. Hess,et al.  Imaging the post-fusion release and capture of a vesicle membrane protein , 2012, Nature Communications.

[105]  Manuela Schmidt,et al.  A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila , 2010, The Journal of cell biology.

[106]  T. Südhof,et al.  Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix , 2010, Neuron.

[107]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[108]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[109]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[110]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[111]  Shoh M. Asano,et al.  Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering , 2013, The Journal of cell biology.

[112]  S. Hallermann,et al.  Mechanisms of short‐term plasticity at neuromuscular active zones of Drosophila , 2010, HFSP journal.

[113]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[114]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[115]  Sonja M. Wojcik,et al.  Regulation of Membrane Fusion in Synaptic Excitation-Secretion Coupling: Speed and Accuracy Matter , 2007, Neuron.

[116]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[117]  Thorsten Lang,et al.  Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster , 2007, Science.

[118]  E. F. Stanley,et al.  Localization of individual calcium channels at the release face of a presynaptic nerve terminal , 1994, Neuron.

[119]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.