Diminishing ether-oxygen content of electrolytes enables temperature-immune lithium metal batteries

[1]  Qizhang Yan,et al.  Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification , 2022, ECS Meeting Abstracts.

[2]  Junda Huang,et al.  Electrolyte chemistry for lithium metal batteries , 2022, Science China Chemistry.

[3]  Zhenan Bao,et al.  Rational solvent molecule tuning for high-performance lithium metal battery electrolytes , 2022, Nature Energy.

[4]  Gustavo M. Hobold,et al.  Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes , 2021, Nature Energy.

[5]  Yong‐Sheng Hu,et al.  Low‐Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries’ Lifetime , 2021, Advanced materials.

[6]  Yong‐Sheng Hu,et al.  Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. , 2021, Angewandte Chemie.

[7]  David G. Mackanic,et al.  Dual‐Solvent Li‐Ion Solvation Enables High‐Performance Li‐Metal Batteries , 2021, Advanced materials.

[8]  Jiaqi Huang,et al.  Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical Lithium-Sulfur Batteries. , 2021, Angewandte Chemie.

[9]  M. Engelhard,et al.  Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries. , 2021, Angewandte Chemie.

[10]  Jeremiah A. Johnson,et al.  Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte , 2021, Nature Energy.

[11]  Yong Yang,et al.  Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review , 2021, Science China Chemistry.

[12]  L. Wan,et al.  In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries , 2021, Science China Chemistry.

[13]  Ping Liu,et al.  Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature , 2021, Nature Energy.

[14]  Chaoyang Wang,et al.  Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles , 2021, Nature Energy.

[15]  Ji‐Guang Zhang,et al.  Lithium Metal Anodes with Nonaqueous Electrolytes. , 2020, Chemical reviews.

[16]  Jiaqi Huang,et al.  Inhibiting Solvent Co-Intercalation in Graphite Anode by Localized High-Concentration Electrolyte in Fast-Charging Batteries. , 2020, Angewandte Chemie.

[17]  Jiaqi Huang,et al.  Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly-Solvating Electrolyte. , 2020, Angewandte Chemie.

[18]  Xiulin Fan,et al.  Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. , 2020, Angewandte Chemie.

[19]  Y. Gong,et al.  Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte , 2020, Advanced Energy Materials.

[20]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[21]  Qiang Zhang,et al.  Can Lithium Metal Anode Cycle at 90°C in Liquid Electrolyte? , 2020, Angewandte Chemie.

[22]  Lei Fan,et al.  Colossal Granular Lithium Deposits Enabled by the Grain‐Coarsening Effect for High‐Efficiency Lithium Metal Full Batteries , 2020, Advanced materials.

[23]  O. Borodin,et al.  Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery , 2020, Nature Nanotechnology.

[24]  Y. Meng,et al.  Exploiting Mechanistic Solvation Kinetics for Dual-Graphite Batteries with High Power Output at Extremely Low Temperature. , 2019, Angewandte Chemie.

[25]  Chibueze V. Amanchukwu,et al.  Nonpolar Alkanes Modify Lithium‐Ion Solvation for Improved Lithium Deposition and Stripping , 2019, Advanced Energy Materials.

[26]  Hongkyung Lee,et al.  Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization , 2019, Nature Energy.

[27]  Jianning Ding,et al.  Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance , 2019, Journal of Power Sources.

[28]  Allen Pei,et al.  Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy , 2019, Nature Energy.

[29]  Jiaqi Huang,et al.  Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. , 2019, Journal of the American Chemical Society.

[30]  Jingwei Xiang,et al.  Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping , 2019, Nature Communications.

[31]  Jiaqi Huang,et al.  Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries , 2019, ACS Energy Letters.

[32]  Qiang Zhang,et al.  The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes. , 2018, Angewandte Chemie.

[33]  Linda F. Nazar,et al.  Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries , 2018, Nature Energy.

[34]  L. M. Rodriguez-Martinez,et al.  Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. , 2018, Journal of the American Chemical Society.

[35]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[36]  S. Choudhury,et al.  Fast ion transport at solid–solid interfaces in hybrid battery anodes , 2018 .

[37]  Jianming Zheng,et al.  Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries , 2018 .

[38]  Jianming Zheng,et al.  Li+-Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances. , 2017, ACS applied materials & interfaces.

[39]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[40]  Peter Lamp,et al.  Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.

[41]  Minggao Ouyang,et al.  Characterization of large format lithium ion battery exposed to extremely high temperature , 2014 .

[42]  Hyung-Man Cho,et al.  A study on time-dependent low temperature power performance of a lithium-ion battery , 2012 .

[43]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[44]  Takeshi Abe,et al.  Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .

[45]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[46]  P. Lloyd,et al.  Influence of Molecular Structure on the Liquid/Liquid Extraction of the Chloro-Complexes of Gallium and Indium with Aliphatic Ethers , 1961, Nature.

[47]  Yuki Yamada,et al.  Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents , 2013 .